2£®Èçͼ1£¬ÒÑÖªÅ×ÎïÏßC1£ºy=ax2+bx+cÓëxÖá½»ÓÚA£¨-$\frac{16}{3}$£¬0£©£¬B£¨6£¬0£©Á½µã£¬ÓëyÖáÕý°ëÖá½»ÓÚµãC£¬ÇÒtan¡ÏABC=$\frac{4}{3}$£®
£¨1£©Çó¸ÃÅ×ÎïÏßC1µÄ½âÎöʽ£»
£¨2£©Èçͼ1£¬DÊÇOCµÄÖе㣬MÊÇÅ×ÎïÏßÉÏÒ»µã£¬Á¬½áDM½»Ï߶ÎBCÓÚEµã£¬ÈôËıßÐÎDOBEÇ¡ºÃ´æÔÚÒ»¸öÄÚÇÐÔ²£¬ÇóµãMµÄ×ø±ê£»
£¨3£©Èçͼ2£¬½«Ô­Å×ÎïÏßC1ÈÆ×ÅijµãÐýת180¡ã£¬µÃµ½µÄÐÂÅ×ÎïÏßC2µÄ¶¥µãΪ×ø±êÔ­µã£¬µãF£¨0£¬1£©£¬µãQÊÇyÖḺ°ëÖáÉÏÒ»µã£¬¹ýQµãµÄÖ±ÏßPQÓëÅ×ÎïÏßC2ÔÚµÚ¶þÏóÏÞÓÐΨһ¹«¹²µãP£¬¹ýP·Ö±ð×÷PG¡ÍPQ½»yÖáÓëG£¬PT¡ÎyÖᣬÇóÖ¤£º¡ÏTPG=¡ÏFPG£®

·ÖÎö £¨1£©ÏÈÀûÓáÏABCµÄÕýÇÐÖµÇó³öOCµÄ³¤£¬µÃµ½µãCµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨Çó½â¼´¿É£»
£¨2£©ËıßÐÎDOEBµÄÄÚÇÐÔ²Ô²ÐÄΪN£¬Á¬½ÓBN£¬¹ýµã×÷NG¡ÍODÓÚµãG£¬×÷NH¡ÍOBÓÚµãH£¬ÔòËıßÐÎOHNGΪÕý·½ÐΣ¬ÉèNH=X£¬ÔòOH=x£¬BH=6-x£¬¸ù¾ÝËıßÐÎDOEBµÄÄÚÇÐÔ²Ô²ÐÄΪN£¬ËùÒÔ¡ÏNBH=$\frac{1}{2}¡ÏOBC$£¬¸ù¾Ýtan¡ÏABC=$\frac{4}{3}$£¬ÇóµÃtan$\frac{1}{2}¡ÏABC$=$\frac{1}{2}$£¬ËùÒÔ$\frac{NH}{BH}=\frac{1}{2}$£¬¼´$\frac{x}{6-x}=\frac{1}{2}$£¬½âµÃ£ºx=2£¬¼´NH=2£¬ËùÒÔÄÚÇÐÔ²µÄÖ±¾¶Îª4£¬ËùÒÔDM¡ÎxÖᣬÉèMµãµÄ×ø±êΪ£¨x£¬4£©£¬°Ñ£¨x£¬4£©´úÈëÅ×ÎïÏßC1µÄ½âÎöʽ£¬¼´¿É½â´ð£»
£¨3£©ÏÈÀûÓöþ´Îº¯ÊýµÄͼÏóÓ뼸ºÎ±ä»»µÃ³öÅ×ÎïÏßC2µÄ½âÎöʽ£¬²¢ÉèP£¨m£¬$\frac{1}{4}$m2£©£¬Ö±ÏßPQµÄ½âÎöʽΪy=kx+n£¨k¡Ù0£©£¬¸ù¾ÝÖ±ÏßPQÓëÅ×ÎïÏßÓÐÒ»¸ö½»µãÇóµÃn=-k2£¬È»ºóÓÃk±íʾµãP¡¢Q¡¢GµÄ×ø±ê£¬µÃµ½GF=FQ£¬ÔÙÀûÓÃÖ±½ÇÈý½ÇÐÎб±ßÉϵÄÖÐÏßµÄÐÔÖÊ£¬µÈÑüÈý½ÇÐεÄÐÔÖʺÍƽÐÐÏßµÄÐÔÖʽøÐÐÍÆÀí¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉB£¨6£¬0£©¿ÉµÃOB=6£¬
¡ßtan¡ÏABC=$\frac{OC}{OB}=\frac{OC}{6}=\frac{4}{3}$£¬
¡àOC=8£¬µãCµÄ×ø±êΪ£¨0£¬8£©£¬
¡ßµãA¡¢B¡¢CÈýµãÔÚÅ×ÎïÏßC1ÉÏ£¬
¡à$\left\{\begin{array}{l}{\frac{256}{9}a-\frac{16}{3}b+c=0}\\{36a+6b+c=0}\\{c=8}\end{array}\right.$£¬
¡àÅ×ÎïÏßC1µÄ½âÎöʽΪy=$-\frac{1}{4}{x}^{2}+\frac{1}{6}x+8$£»
£¨2£©Èçͼ1£¬

ËıßÐÎDOEBµÄÄÚÇÐÔ²Ô²ÐÄΪN£¬Á¬½ÓBN£¬¹ýµã×÷NG¡ÍODÓÚµãG£¬×÷NH¡ÍOBÓÚµãH£¬
ÔòËıßÐÎOHNGΪÕý·½ÐΣ¬ÉèNH=X£¬ÔòOH=x£¬BH=6-x£¬
¡ßËıßÐÎDOEBµÄÄÚÇÐÔ²Ô²ÐÄΪN£¬
¡à¡ÏNBH=$\frac{1}{2}¡ÏOBC$£¬
¡ßtan¡ÏABC=$\frac{4}{3}$£¬
¼´tan¡ÏABC=$\frac{2tan\frac{1}{2}¡ÏABC}{1-£¨tan\frac{1}{2}¡ÏABC£©^{2}}$=$\frac{4}{3}$£¬
½âµÃ£º$tan\frac{1}{2}¡ÏABC=-2$£¨ÉáÈ¥£©£¬$tan\frac{1}{2}¡ÏABC=\frac{1}{2}$£¬
¡àtan¡ÏNBH=$\frac{1}{2}$£¬
¡à$\frac{NH}{BH}=\frac{1}{2}$£¬
¼´$\frac{x}{6-x}=\frac{1}{2}$£¬
½âµÃ£ºx=2£¬
¼´NH=2£¬
¡àÄÚÇÐÔ²µÄÖ±¾¶Îª4£¬
¡ßOD=4£¬
¡àOD=ÄÚÇÐÔ²µÄÖ±¾¶£¬
¡àDM¡ÎxÖᣬ
¡àÉèMµãµÄ×ø±êΪ£¨x£¬4£©£¬
°Ñ£¨x£¬4£©´úÈëÅ×ÎïÏßC1µÄ½âÎöʽΪy=$-\frac{1}{4}{x}^{2}+\frac{1}{6}x+8$µÃ£º$-\frac{1}{4}{x}^{2}+\frac{1}{6}x+8=4$£¬
½âµÃ£ºx=$\frac{1-\sqrt{145}}{3}$£¨ÉáÈ¥£©»ò$\frac{1+\sqrt{145}}{3}$£¬
¡àµãMµÄ×ø±êΪ£¨$\frac{1+\sqrt{145}}{3}$£¬4£©£®
£¨3£©¡ßÅ×ÎïÏßC1ÈÆ×ÅijµãÐýת180¡ã£¬µÃµ½µÄÐÂÅ×ÎïÏßC2µÄ¶¥µãΪ×ø±êÔ­µã£¬
¡àÐÂÅ×ÎïÏßC2µÄ½âÎöʽΪy=$\frac{1}{4}$x2£¬
ÉèP£¨m£¬$\frac{1}{4}$m2£©£¬Ö±ÏßPQµÄ½âÎöʽΪy=kx+n£¨k¡Ù0£©£¬
ÓɵãQÊÇyÖḺ°ëÖáÉÏÒ»µã£¬¹ýQµãµÄÖ±ÏßPQÓëÅ×ÎïÏßC2ÔÚµÚ¶þÏóÏÞÓÐΨһ¹«¹²µãP£¬µÃ$\left\{\begin{array}{l}{y=\frac{1}{4}{x}^{2}}\\{y=kx+n}\end{array}\right.$£¬
¡à$\frac{1}{4}$x2-kx+n=0£¬
¡à¡÷=£¨-k£©2-4¡Á$\frac{1}{4}$¡Á£¨-n£©=0£¬¡àn=-k2£¬
¡àÖ±ÏßPQµÄ½âÎöʽΪy=kx-k2£¬P£¨2k£¬k2£©£¬Q£¨0£¬-k2£©£¬
ÉèÖ±ÏßPGµÄ½âÎöʽΪy=$\frac{1}{4}$x+p£¬½«PµÄ×ø±ê´úÈë¿ÉµÃp=k2-2£¬ÔòG£¨0£¬k2-2£©£¬
¡àGF=k2-1£¬FQ=k2-1£¬
¡àGF=FQ£¬¼´µãFÊÇRt¡÷GPQб±ßÉϵÄÖе㣬
¡àFP=FG£¬
¡à¡ÏFPG=¡ÏFGP£¬
ÓÖ¡ßPT¡ÎyÖᣬ
¡à¡ÏTPG=¡ÏFGP£¬
¡à¡ÏTPG=¡ÏFPG£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°ÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý¡¢¶þ´Îº¯ÊýµÄ½âÎöʽ£¬×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ¬½âÌâʱҪעÒâÊýÐνáºÏ˼Ï룬·½³Ì˼Ï룬·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬?ABCDµÄ±ßCDΪб±ßÏòÄÚ×÷µÈÑüÖ±½Ç¡÷CDE£¬Ê¹AD=DE=CE£¬¡ÏDEC=90¡ã£¬ÇÒµãEÔÚƽÐÐËıßÐÎÄÚ²¿£¬Á¬½ÓAE¡¢BE£¬Çó¡ÏAEBµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏA=90¡ã£¬AB=$\sqrt{2}$£¬µãDλÓÚ±ßBCµÄÖеãÉÏ£®µãEÔÚABÉÏ£¬µãFÔÚACÉÏ£¬¡ÏEDF=45¡ã£¬¸ø³öÒÔϽáÂÛ£º
¢Ùµ±BE=1ʱ£¬S¡÷CDF=$\frac{\sqrt{2}}{2}$£»¢Ú¡ÏDFC=¡ÏEDB£»¢ÛCF•BE=1£»¢ÜC¡÷AEF=$\sqrt{2}$£»¢ÝS¡÷AEF+2S¡÷DEF=$\frac{1}{2}$£»
ÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ù¢Û¢Ü¢ÝC£®¢Ú¢Û¢ÜD£®¢Û¢Ü¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬ÔÚ?ABCDÖУ¬EÊÇAB±ßÉϵÄÒ»µã£¬Á¬½ÓCE½»¶Ô½ÇÏßBDÓÚF£¬ÈôAE£ºBE=2£º3£¬Ôò¡÷BEFºÍ¡÷DCFµÄÖܳ¤Ö®±ÈΪ3£º5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªµÈÑüÖ±½Ç¡÷ABCºÍµÈÑüÖ±½Ç¡÷CDEÖУ¬AB=BC£¬CD=DE£¬¡ÏABC=90¡ã£¬¡ÏCDE=90¡ã£¬CD£¾BC£¬È¡Ï߶ÎAEµÄÖеãM£¬Á¬½áBM¡¢DM¡¢BD£®
£¨1£©Èçͼ1£¬µ±BC¡ÍCEʱ£¬Á¬½ÓAE£¬ÊÔ²ÂÏëBMÓëMDµÄÊýÁ¿¹ØϵºÍλÖùØϵ£¬ÇëÖ±½Óд³ö´ð°¸£»
£¨2£©Èçͼ2£¬µ±µãA¡¢C¡¢EÈýµãÔÚͬһÌõÖ±ÏßÉÏʱ£¬ÆäËûÌõ¼þ²»±ä£¬ÊÔ̽¾¿BMÓëMDµÄÊýÁ¿¹ØϵºÍλÖùØϵ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¹Û²ìÏÂÁÐÊý£º1£¬0£¬5£¬0£¬9£¬0£¬13£¬0¡­ÔòµÚn¸öÊý¿ÉÒÔ±íʾΪ0»ò1+$\frac{1}{2}$£¨n-1£©¡Á4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¸ø³öÒ»×éʽ×Ó£º32+42¡Ô52¡¢82+62¡Ô102¡¢152+82¡Ô172¡¢242+102¡Ô262£¬¸ù¾ÝÄã·¢ÏֵĹæÂÉ£¬Ð´³öµÚÎå¸öʽ×Ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Å×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¹ýA£¨4£¬4£©£¬B£¨2£¬m£©Á½µã£¬µãBµ½Å×ÎïÏ߶ԳÆÖáµÄ¾àÀë¼ÇΪd£¬Âú×ã0£¼d¡Ü1£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®m¡Ü2»òm¡Ý3B£®m¡Ü3»òm¡Ý4C£®2£¼m£¼3D£®3£¼m£¼4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬DE¡ÎCA£¬DF¡ÎBA£¬ÏÂÁÐËĸöÅжϲ»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ËıßÐÎAEDFÊÇƽÐÐËıßÐÎ
B£®Èç¹û¡ÏBAC=90¡ã£¬ÄÇôËıßÐÎAEDFÊǾØÐÎ
C£®Èç¹ûADƽ·Ö¡ÏBAC£¬ÄÇôËıßÐÎAEDFÊǾØÐÎ
D£®Èç¹ûAD¡ÍBC£¬ÇÒAB=AC£¬ÄÇôËıßÐÎAEDFÊÇÁâÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸