精英家教网 > 初中数学 > 题目详情

【题目】如图,已知四边形ABCD是梯形,ADBC,∠A90°BCBDCEBD,垂足为E

(1)求证:ABD≌△ECB

(2)若∠DBC50°,求∠DCE的度数.

【答案】(1) 见解析(2) 25°

【解析】

1)主要考查三角形全等的判定方法;

2)主要考查等腰三角形中的等边对等角以及三角形的内角和。

1)证明:∵ADBC
∴∠ADB=EBC
CEBD,∠A=90°
∴∠A=CEB
ABDECB中,
∵∠A=CEBADBC
∴∠ADB=DBC
∴∠ABD=BCE
又∵BC=BD
∴△ABD≌△ECB

2)解:∵∠DBC=50°BC=BD
∴∠EDC=180°-50°=65°
又∵CEBD
∴∠CED=90°
∴∠DCE=90°-EDC=90°-65°=25°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“创卫工作,人人参与”我区园林工作者,为了把城市装扮得更加靓丽,用若干相同的花盆按一定的规律组成不同的正多边形图案.如图,其中第个图形一共有个花盆,第个图形一共有个花盆,第个图形一共有个花盆...则第个图形中一共有花盆的个数为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON60°,点AOM边上一点,点BCON边上两点,且ABAC,作点B关于OM的对称点点D,连接ADCDOD.

1)依题意补全图形;

2)猜想∠DAC °,并证明;

3)猜想线段OAODOC的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用反证法证明命题在一个三角形中,至少有一个内角小于或等于的过程如下:

已知: ;

求证: 中至少有一个内角小于或等于.

证明:假设中没有一个内角小于或等于,即,则

这与“__________” 这个定理相矛盾,

所以中至少有一个内角小于或等于.

在证明过程中,横线上应填入的句子是(

A.三角形内角和等于B.三角形的一个外角等于与它不相邻的两个内角的和

C.等边三角形的各角都相等,并且每个角都等于D.等式的性质

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1 min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:

甲:将全体测试数据分成6组绘成直方图(如图);

乙:跳绳次数不少于105次的同学占96%;

丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;

丁:第②、③、④组的频数之比为4:17:15。

根据这四名同学提供的材料,下面有四个推断:

①这次跳绳测试共抽取了150人;②该年级跳绳次数的中位数在115~125之间

③第4组的人数为45人 ④如果跳绳次数不少于135次为优秀,根据这次调查结果,估计全年级达到跳绳优秀的人数可以超过250人,其中合理的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有公共顶点(顶点均按逆时针排列),,点的中点,连接并延长交直线于点,连接.

1)如图,当时,

求证:①

是等腰直角三角形.

2)当时,画出相应的图形(画一个即可),并直接指出是何种特殊三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列说法:四个角都相等的四边形是矩形;有一组对边平行,有两个角为直角的四边形是矩形;两组对边分别相等且有一个角为直角的四边形是矩形;对角线相等且有一个角是直角的四边形是矩形;对角线互相平分且相等的四边形是矩形.其中,正确的个数是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:

(1)该班总人数是

(2)根据计算,请你补全两个统计图;

(3)观察补全后的统计图,写出一条你发现的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过对《勾股定理》的学习,我们知道:如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.如果我们新定义一种三角形——两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.

1)根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?

(填或不是);

2)若某三角形的三边长分别为12,则该三角形是不是奇异三角形,请做出判断并写出判断依据;

3)在中,两边长分别为,且且,则这个三角形是不是奇异三角形?请做出判断并写出判断依据;

探究:Rt中,,且b>a,若Rt是奇异三角形,求.

查看答案和解析>>

同步练习册答案