精英家教网 > 初中数学 > 题目详情

坐标平面上的点P(,-2),当P向左平移个单位,再向上平移个单位后,点P的坐标为________.

答案:
解析:

(0,-)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.
若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
解决问题:
(1)计算:{3,1}+{1,2};{1,2}+{3,1};
(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置还是点B吗?在图1中画出四边形OABC.
②证明四边形OABC是平行四边形.
(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

7、已知正方形OABC各顶点坐标为O(0,0),A(1,0),B(1,1),C(0,1),若P为坐标平面上的点,且△POA、△PAB、△PBC、△PCO都是等腰三角形,问P点可能的不同位置数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法正确的个数是(  )
①无理数都是无限小数;   ②
(-2)2
的平方根是±2;  ③对角线互相垂直的菱形是正方形; 
a2
=(
a
)2
;          ⑤坐标平面上的点与实数一一对应.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为 3+(-2)=1.
若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
解决问题:
(1)计算:{3,1}+{1,2};{1,2}+{3,1}.
(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗?在图精英家教网中画出四边形OABC.
②证明四边形OABC是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,直线y1=k1x和反比例函数y2=
k2
x
的图象都经过点A(2,4)和点B,过A点作AE⊥x轴,垂足为E点.
(1)则k1=
2
2
,k2=
8
8
S△AOE=
4
4

(2)根据图象,写出不等式k1x>
k2
x
的解集;
(3)P为x轴上的点,且△POA是以OA为腰的等腰三角形,求出P点的坐标;
(4)Q为坐标平面上的点,且以点B、O、E、Q为顶点的四边形是平行四边形,直接写出满足条件的所有Q点的坐标.

查看答案和解析>>

同步练习册答案