(本小题10分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(Ⅰ) 求证:△AMB≌△ENB;
(Ⅱ) ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(Ⅲ) 当AM+BM+CM的最小值为时,求正方形的边长.
解:⑴∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠ABM=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS). ………………3分
⑵①当M点落在BD的中点时,AM+CM的值最小. ………………5分
②如图,连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小. ………………7分
理由如下:连接MN.由⑴知,△AMB≌△ENB,
∴AM=EN.
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长. …………8分
⑶过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=x,EF=.
在Rt△EFC中,
∵EF2+FC2=EC2,
∴()2+(x+x)2=.
解得,x=(舍去负值).
∴正方形的边长为. ………………10分
解析:略
科目:初中数学 来源: 题型:
(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012学年江苏省启东市九年级寒假作业检测数学卷 题型:解答题
(本小题10分)
如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,
1.(1)求该抛物线的解析式;
2.(2)抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2012届北京一六三中初三上学期模拟数学卷 题型:解答题
(本小题10分)如图, 抛物线与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程的两个实数根.
1.(1)求A、B两点的坐标;
2. (2) 求出此抛物线的的解析式及顶点D的坐标;
3.(3)求出此抛物线与x轴的另一个交点C的坐标;
4.(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(四川内江卷)数学 题型:解答题
(本小题10分)如图11,已知二次函数y= -x2 +mx +4m的图象与x轴交于
A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2) - x1x2=10.
(1)求此二次函数的解析式.
(2)写出B,C两点的坐标及抛物线顶点M的坐标;
(3)连结BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com