【题目】小强与小颖两位同学在学习“概率”时,做抛骰子(均匀正方体形状)试验,共随机抛了60次,出现向上点数的次数如下图所示:
(1)请补全下边的统计图;
(2)小强说:“如果抛600次,则出现向上点数为3的次数正好是100次.”他的说法正确吗?为什么?
(3)若小强与小颖各随机抛一枚骰子,求两枚骰 子向上点数之和为3的倍数的概率.
【答案】(1)见解析;(2)错误,理由见解析;(3)
【解析】
(1)根据各组频数之和等于数据总数60,可求出出现向上的点数为2的次数,从而画出对应的图形;
(2)因为事件发生具有随机性,所以不能用这次试验的频率估计概率,小强的说法是错误的;
(3)可应用列表法或树形图法求出结果.
解:(1)出现向上的点数为2的次数:60-9-10-12-7-14=8,
补全统计图如下:
(2)小强的说法错误,因为事件发生具有随机性,故“向上点数为3”的次数不一定是100次.
(3)用a表示小强抛一枚骰子时出现向上的点数,b表示小颖抛一枚骰子时出现向上的点数,a+b表示点数和.列表如下:
从表中可以看出,一共有36种可能的结果,其中出现向上点数之和为3的倍数的结果有12种,故P(出现向上点数之和为3的倍数)==.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x+6与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)如图1,点P为直线BC上方抛物线上一动点,过点P作PH∥y轴,交直线BC于点H,过点P作PQ⊥BC于点Q,当PQ﹣PH最大时,点C关于x轴的对称点为点D,点M为直线BC上一动点,点N为y轴上一动点,连接PM、MN,求PM+MN+ND的最小值;
(2)如图2,连接AC,将△OAC绕着点O顺时针旋转,记旋转过程中的△OAC为△OA'C',点A的对应点为点A',点C的对应点为点C'.当点A'刚好落在线段AC上时,将△OA'C'沿着直线BC平移,在平移过程中,直线OC'与抛物线对称轴交于点E,与x轴交于点F,设点R是平面内任意一点,是否存在点R,使得以B、E、F、R为顶点的四边形是菱形?若存在,请直接写出点R的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为庆祝中华人民共和国建国70周年,某校从A、B两位男生和D、E两位女生中选派学生,参加全区中小学“我和我的祖国”演讲比赛.
(1)如果选派一位学生参赛,那么选派到的代表是A同学的概率是 ;
(2)如果选派两位学生参赛,用树状图或列表法,求恰好选派一男一女两位同学参赛的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是反比例函数 y = (x>0 )的图象上的一个动点,连接OA ,OB⊥OA,且OB =2OA.那么经过点B的反比例函数的表达式为( )
A.y=-B.y= C.y=-D.y=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为( )
A.9B.8C.15D.14.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).
(1)求y与x的函数关系式.
(2)要使日销售利润为720元,销售单价应定为多少元?
(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市实验中学计划在暑假第二周的星期一至星期五开展暑假社会实践活动,要求每位学生选择两天参加活动.
(1)甲同学随机选择连续的两天,其中有一天是星期三的概率是 ;
(2)乙同学随机选择两天,其中有一天是星期三的概率是多少?(列表或画树形图或列举)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于A,B两点(A在B左边),与轴交于C点,顶点为P,OC=2AO.
(1)求与满足的关系式;
(2)直线AD//BC,与抛物线交于另一点D,△ADP的面积为,求的值;
(3)在(2)的条件下,过(1,-1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com