【题目】如图,PA为⊙O的切线,A为切点,直线PO交⊙O于点E,F过点A作PO的垂线AB垂足为D,交⊙O于点B,延长BO与⊙O交与点C,连接AC,BF.
(1)求证:PB与⊙O相切;
(2)是探究线段EF,OD,OP之间的数量关系,并加以证明;
(3)若tan∠F= ,求cos∠ACB的值.
【答案】
(1)解:如图,
连接OA,
∵PD⊥AB,
∴OP垂直平分AB,
∴PA=PB,OA=OB,
∴△OAP≌△OBP,
∴∠OAP=∠OBP,
∵PA为⊙O的切线,
∴∠OAP=90°,
∴∠OQP=90°,
∵点B在⊙O上,
∴BP与⊙O相切
(2)解:EF,OD,OP间的数量关系为4EF2=OD×OP,
理由:∵∠OAP=90°,AD⊥OP,
∴OA2=OD×OP,
∵OA= EF,
∴OD×OP= EF2 ,
∴4EF2=OD×OP
(3)解:∵tanF= ,设BD=a,
∴FD=2a,AD=a,DE= a,EF= a,
∴OD= a,
∴AC= a,
∴cos∠ACB=
【解析】考查对圆的认识,正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算),弧长的计算 ,扇形面积的计算等考点的理解.
小题1 连接OA,利用垂径定理得到D为AB的中点,即OP垂直平分AB,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线.
小题2 由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.
小题3 根据勾股定理易求BC的长;最后由余弦三角函数的定义求解.
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:
(1)如图1,将长方形纸片ABFE沿着线段DC折叠,CF交AD于点H,过点H作HG∥DC,交线段CB于点G.
①判断∠FHG与∠EDC是否相等,并说明理由;
②说明HG平分∠AHC的理由.
(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABE,其它条件不变.HG是否平分∠AHC?如果平分请说明理由;如果不平分,请找出∠CHG,∠AHG与∠E的数量关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程kx2+(2k+1)x+2=0.
(1)求证:无论k取任何实数时,方程总有实数根.
(2)是否存在实数k使方程两根的倒数和为2?若存在,请求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y= 的图象与二次函数y=﹣x2+bx+c的图象在第一象限内相交A、B两点,A、B两点的纵坐标分别为1,3,且AB=2
(1)求反比例函数的解析式;
(2)求二次函数的解析式;
(3)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(a,3),B(b,1)都在双曲线y= 上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列例题的解题过程,并完成相关问题
例:如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12cm,BC=18cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以2cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ∥CD和PQ=CD,分别经过多长时间?为什么?
解:①设经过ts时,PQ∥CD且PQ=CD,此时四边形PQCD为平行四边形.
∵PD=(12-t)cm,CQ=2t cm,
∴12-t=2t.∴t=4.
∴当t=4时,PQ∥CD,且PQ=CD.
②设经过ts时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.
当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.
∵∠B=∠A=∠DFB=90°,
∴四边形ABFD是矩形.∴AD=BF.
∵AD=12 cm,BC=18 cm,
∴CF=BC-BF=6 cm.
当四边形PQCD为梯形(腰相等)时,
PD+2(BC-AD)=CQ,
∴(12-t)+12=2t.∴t=8.
∴当t=8时,PQ=CD.
当四边形PQCD为平行四边形时,由①知当t=4时,PQ=CD.
综上,当t=4时,PQ∥CD;当t=4或t=8时,PQ=CD.
问题1:在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.
问题2:从运动开始,当t取何值时,四边形PQBA是矩形?
问题3:在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.
问题4:是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)△ABC与△A′B′C′在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标:A′ ; B′ ;C′ ;
(2)说明△A′B′C′由△ABC经过怎样的平移得到? .
(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为 ;
(4)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).
(参考数据:sin37°≈ ,tan37°≈ ,sin65°≈ ,tan65°≈ )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com