精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经

过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封

闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2<0)的顶点.

(1)求A、B两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;

(3)当BDM为直角三角形时,求的值.

【答案】解:(1)令y=0,则

m<0,,解得:

A(,0)、B(3,0)。

(2)存在。理由如下:

设抛物线C1的表达式为),

把C(0,)代入可得,

1的表达式为:,即

设P(p

SPBC = SPOC + SBOP –SBOC =

<0时,SPBC最大值为

(3)由C2可知: B(3,0),D(0,),M(1,

BD2=BM2=DM2=

∵∠MBD<90°, 讨论BMD=90°和BDM=90°两种情况

BMD=90°时,BM2+ DM2= BD2 ,即=

解得:, (舍去)

BDM=90°时,BD2+ DM2= BM2 ,即=

解得: (舍去)

综上所述, 时,BDM为直角三角形

解析(1)在中令y=0,即可得到A、B两点的坐标。

(2)先用待定系数法得到抛物线C1的解析式,由SPBC = SPOC + SBOP –SBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值

(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90°时;BDM=90°时,讨论即可求得m的值

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OA⊥OC,点D在上,且=2,OA=4.

(1)∠COD=    °;

(2)求弦AD的长;

(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由.

(解答上面各题时,请按题意,自行补足图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合).如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.

(1)直接写出抛物线y=-x2+1的勾股点的坐标.

(2)如图②,已知抛物线y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1, )是抛物线的勾股点,求抛物线的函数表达式.

(3)在(2)的条件下,点Q在抛物线上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图,要把小河里的水引到田地A处,就作ABl(垂足为B),沿AB挖水沟,水沟最短.理由是___________

2)把命题“平行于同一直线的两直线平行”写成“如果……,那么……”的形式._____________________________

3)比较大小:______

4)已知是同类项,则m-3n的平方根是___

5)已知点P的坐标为(3a+62a),且点P到两坐标轴的距离相等,则点P的坐标是______

6 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(11),第2次接着运动到点(20),第3次接着运动到点(32),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,对角线ACBD交于点OABAC,点EBD上一点,且AEAD,∠EAD=∠BAC

⑴ 求证:∠ABD=∠ACD

⑵ 若∠ACB=65°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列两段材料,回答下列各题:

材料一:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如:等,类比有理数的乘方,我们把记作,读作“2的圈3次方”,记作,读作“的圈4次方”,一般地,把记作,读作“的圈次方”.

材料二:求值: 解:设,将等式两边同时乘以2得:将下式减去上式得

1)直接写出计算结果:

2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?试一试:将下列运算结果直接写成幂的形式: 为正整数)

3)计算

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P关于OAOB的对称点分别为HG,直线HGOAOB于点CD,若∠HOG=80°,则∠CPD=___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+bx+c+1

1b=1时,求这个二次函数的对称轴的方程;

2c=b22b,问:b为何值时,二次函数的图象与x轴相切?

3若二次函数的图象与x轴交于点Ax10),Bx20),且x1x2b0,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴lx轴、直线BM、直线AM分别交于点DEF,且满足=,求二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分8分)某厂制作甲、乙两种环保包装盒。已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料。

1)求制作每个甲盒、乙盒各用多少材料?

2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料。

查看答案和解析>>

同步练习册答案