分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可;
(3)根据题意列出方程组,求出解即可;
(4)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{3x+2y=47①}\\{3x-2y=19②}\end{array}\right.$,
①+②得:6x=66,即x=11,
把x=11代入①得:y=7,
则方程组的解为$\left\{\begin{array}{l}{x=11}\\{y=7}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{5x+3y=45①}\\{5x-4y=10②}\end{array}\right.$,
①-②得:7y=35,即y=5,
把y=5代入①得:x=6,
则方程组的解为$\left\{\begin{array}{l}{x=6}\\{y=5}\end{array}\right.$;
(3)整理得:$\left\{\begin{array}{l}{x-3y=1①}\\{2x+y=16②}\end{array}\right.$,
①+②×3得:7x=49,即x=7,
把x=7代入①得:y=2,
则方程组的解为$\left\{\begin{array}{l}{x=7}\\{y=2}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{x+2y-z=6①}\\{2x+y+z=9②}\\{3x+4y+z=18③}\end{array}\right.$,
①+②得:3x+3y=15,即x+y=5④,
①+③得:4x+6y=24,即2x+3y=12⑤,
④×3-⑤得:x=3,
把x=3代入④得:y=2,
把x=3,y=2代入①得:z=1,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\\{z=1}\end{array}\right.$.
点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1cm,2cm,3cm | B. | 2cm,3cm,4cm | C. | 2cm,3cm,5cm | D. | 2cm,3cm,6cm |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com