精英家教网 > 初中数学 > 题目详情
如图,已知:△ABC中,BD、CE分别是AC、AB边上的高,G、F分别是BC、DE的中点。

(1)试探索FG与DE的关系;
(2)ED=7,BC=12,求△EGD的周长。
解:(1)FG垂直平分DE, 
证明:连接GD、GE
∵BD是△ABC的高,G为BC的中点,
∴在Rt△CBD中,GD=BC,(直角三角形斜边上的中线等于斜边的一半)
同理可得GE=BC,
∴GD=GE,
∵F是DE的中点,(等腰三角形三线合一)
∴FG⊥DE。
(2)△EGD的周长等于GE+GD+DE=BC+BC+DE=12+7=19。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始,沿AB边向点B以1cm/S的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,(其中一点到达终点,另一点也停止运动),设经过t秒.
(1)如果P、Q分别从A、B两点同时出发,那么几秒后,△PBQ的面积等于△ABC的面积的
13

(2)在(1)中,△PQB的面积能否等于10cm2?请说明理由.
(3)若P、Q分别从A、B两点出发,那么几秒后,PQ的长度等于6cm?
(4)P、Q在移动的过程中,是否存在某一时刻t,使得PQ∥AC?若存在求出t的值,若不存在请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC中,∠1=∠2,且AE=AD,BE和CD相交于F.求证:BF=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC为等边三角形,D、F分别为射线BC、射线AB边上的点,BD=AF,以AD为边作等边△ADE.
(1)如图①所示,当点D在线段BC上时:
①试说明:△ACD≌△CBF;②判断四边形CDEF的形状,并说明理由;
(2)如图②所示,当点D在BC的延长线上时,判断四边形CDEF的形状,并说明理由.
(3)当点D在射线BC上移动到何处时,∠DEF=30°,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=36°,BD为∠ABC的平分线,则
AD
AC
的值等于
5
-1
2
5
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,D是边BC的中点,点E在边BA的延长线上,AE=AB,
BA
=
a
BC
=
b
,那么
DE
=
2
a
-
1
2
b
2
a
-
1
2
b

查看答案和解析>>

同步练习册答案