【题目】如图,一圆弧形桥拱的圆心为,拱桥的水面跨度米,桥拱到水面的最大高度为米.求:
桥拱的半径;
现水面上涨后水面跨度为米,求水面上涨的高度为________米.
【答案】(1)50;(2)10.
【解析】
(1)根据垂径定理和勾股定理求解;
(2)由垂径定理求出MH,由勾股定理求出EH,得出HF即可.
(1)如图,
设点E是拱桥所在的圆的圆心,作EF⊥AB于F,延长EF交圆于点D,
则由垂径定理知,点F是AB的中点,AF=FB=AB=40,EF=ED-FD=AE-DF,
由勾股定理知,AE2=AF2+EF2=AF2+(AE-DF)2,
设圆的半径是r,
则:r2=402+(r-20)2,
解得:r=50;
即桥拱的半径为50米;
(2)设水面上涨后水面跨度MN为60米,MN交ED于H,连接EM,如图2所示
则MH=NH=MN=30,
∴EH==40(米),
∵EF=50-20=30(米),
∴HF=EH-EF=10(米);
故答案为:10.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).
(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大学生小韩在暑假创业,销售一种进价为元/件的玩具熊,销售过程中发现,每周销售量少(件)与销售单价(元)之间的关系可近似的看作一次函数:
如果小韩想要每周获得元的利润,那么销售单价应定为多少元?
设小韩每周获得利润为(元),当销售单价定为多少元时,每周可获得利润最大,最大利润是多少?
若该玩具熊的销售单价不得高于元,如果小韩想要每周获得的利润不低于元,那么他的销售单价应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A表示一个数,若把数A写成形如的形式,其中、、、、…都为整数.则我们称把数A写成连分数形式.
例如:把2.8写成连分数形式的过程如下:
2.8-2=0.8,,
1.25-1=0.25,,
4-4=0.
(1)把3.245写成连分数形式不完整的过程如下:
3.245-3=0.245,,
4.082-4=0.082,,
12.250-12=0.25,,
4-4=0.
∴
则_____________;_____________;
(2)请把写成连分数形式;
(3)有这样一个问题:如图是长为47,宽为10的长方形纸片.从中裁剪出正方形,若长方形纸片无剩余,则剪出的正方形最少是几个?
小明认为这个问题和 “把一个数化为连分数形式” 有关联,并把化成连分数从而解决了问题.你可以参考小明的思路解决上述问题,请直接写出“剪出的正方形最少”时,正方形的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,张老师举了下面的例题:
例1 等腰三角形中,,求的度数.(答案:)
例2 等腰三角形中,,求的度数.(答案:或或)
张老师启发同学们进行变式,小敏编了如下两题:
变式1: 等腰三角形中,∠A=100°,求的度数.
变式2: 等腰三角形中,∠A= 45° ,求的度数.
(1)请你解答以上两道变式题.
(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当只有一个度数时,请你探索的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A. “明天降雨的概率是”表示明天有的时间降雨
B. “明天降雨的概率是”表示明天降雨的可能性有八成
C. “抛一枚硬币正面朝上的概率是”表示每抛硬币次就有次出现正面朝上
D. “彩票中奖的概率是”表示买张彩票一定有张会中奖
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com