精英家教网 > 初中数学 > 题目详情
已知A(m+3,2)和B(3,
m
3
)
是同一个反比例函数图象上的两个点.
(1)求m的值;(2)作出这个反比例函数的图象;(3)将A,B两点标在函数图象上.
(1)设此反比例函数的解析式为y=
k
x
(k≠0).
∵A(m+3,2)和B(3,
m
3
)是同一个反比例函数图象上的两个点,
故k=2(m+3)=3×
m
3

解得m=-6.

(2)由(1)得m=-6,
则k=3×
-6
3
=-6,
故函数的解析式为y=-
6
x


(3)∵m=-6,
∴A(-3,2),B(3,-2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:
①双曲线的解析式为y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5

④AC+OB=12
5
,其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=k1x+b的图象与反比例函数y=
k2
x
的图象交于A(1,-3),B(3,m)两点,连接OA、OB.
(1)求两个函数的解析式;
(2)求△ABO的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为______(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设△ABC中BC边的长为x厘米,BC边上的高AD为y厘米,△ABC的面积是常数,已知y关于x的函数图象过点(3,4).
(1)y关于x的函数解析式和△ABC的面积;
(2)利用函数图象,求2<x<8时y的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=
3
x-2的图象经过(a,b),(a+1,b+k)两点,并且与反比例函数y=
k
x
的图象交于第一象限内一点A.
(1)求反比例函数的解析式;
(2)求点A的坐标;
(3)若射线OA与x轴的夹角为30°请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,是反比例函数y=
k
x
的图象,且k是一元二次方程x2+x-6=0的一个根.
(1)求方程x2+x-6=0的两个根;
(2)确定k的值;
(3)若m为非负实数,对于函数y=
k
x
,当x1=m+1及x2=m+2时,说明y1与y2的大小关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(a,b)为双曲线y=
6
x
(x>0)图象上一点.
(1)如图1所示,过点A作AD⊥y轴于D点,点P是x轴任意一点,连接AP.求△APD的面积.
(2)以A(a,b)为直角顶点作等腰Rt△ABC,如图2所示,其中点B在点C的左侧,若B点的坐标为B(-1,0),且a、b都为整数时,试求线段BC的长.
(3)在(2)中,当等腰Rt△ABC的直角顶点A(a,b)在双曲线上移动时,B、C两点也随着移动,试用含a,b的式子表示C点坐标;并证明在移动过程中OC2-OB2的值恒为定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

三角形的面积为15cm2,这时底边上的高ycm与底边xcm间的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案