【题目】如图,在△ABC中,∠ABC=65°,∠C=35°,AD是△ABC的角平分线.
(1)求∠ADC的度数.
(2)过点B作BE⊥AD于点E,BE延长线交AC于点F.求∠AFE的度数.
【答案】(1)ADC=105°;(2)AFE=50°;
【解析】
(1)因为∠ABC=65°,∠C=35°,
根据三角形内角和,
可得∠BAC=80°,
由于AD是△ABC的角平分线,
则∠CAD=40°,
根据三角形的内角和可得
∠ADC=180°-∠C=35°∠CAD=40°=105°.
(2)由(1)可知∠ADC=105°,
因为BE⊥AD,
所以∠BED=∠AEF=90°,
根据三角形的内角和,
可得∠AFE=180°-∠AEF-∠CAD=50°.
(1)根据三角形内角和,结合题意可得∠BAC,再由三角形内结合以及AD是△ABC的角平分线求出答案;
(2)由(1)可知∠ADC的度数,因为BE⊥AD,所以∠BED=∠AEF=90°,再由三角形的内角和性质即可求解.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示方格纸中,每个小正方形的边长均为1,点A,点B,点C在小正方形的顶点上.
(1)画出△ABC中边BC上的高AD;
(2)画出△ABC中边AC上的中线BE;
(3)直接写出△ABE的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=1.25.
(1)求直线AC的解析式.
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC和△DEF(它们均为锐角三角形)中,AC=DF,AB=DE.
(1)用尺规在图中分别作出AB、DE边上的高CG、FH(不要写作法,保留作图痕迹).
(2)如果CG=FH,猜测△ABC和△DEF是否全等,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,
(1)求证:DF与⊙O的位置关系并证明;
(2)求FG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com