【题目】如图,在△ABC中,∠C=90°,AC=BC=6.点P在边AC上运动,过点P作PD⊥AB于点D,以AP、AD为邻边作PADE.设□PADE与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x≤6).
(1)求线段PE的长(用含x的代数式表示).
(2)当点E落在边BC上时,求x的值.
(3)求y与x之间的函数关系式.
(4)直接写出点E到△ABC任意两边所在直线距离相等时x的值.
【答案】(1)PE=AD=x;(2)4;(3)①y=x2;②y=﹣x2+9x﹣18;(4)3,6,
【解析】
(1)∵在△ABC中,∠C=90°,AC=BC,
∴∠A=45°,
∵PD⊥AB,
∴AD=APcos∠A=x=PD,
∵四边形PADE是平行四边形,
∴PE=AD=x;
(2)当点E落在边BC上时,如图1.
∵PE∥AD,
∴∠CPE=∠A=45°,
∵∠C=90°,
∴PC=PEcos∠CPE=x=x.
∵AP+PC=AC,
∴x+x=6,
∴x=4;
(3)①当0<x≤4时,如图2.
y=SPADE=ADPD=xx=x2,即y=x2;
②当4<x≤6时,如图3,设DE与BC交于G,PE与BC交于F.
∵AD=x,AB=AC=6,
∴DB=AB﹣AD=6﹣x,
∴DG=DBsin∠B=(6﹣x)=6﹣x,
∴GE=DE﹣DG=x﹣(6﹣x)=x﹣6,
∴y=SPADE﹣S△GFE=x2﹣(x﹣6)2=﹣x2+9x﹣18;
(4)①当E在△ABC内部时,0<x<4,如图4,过E作EL⊥AC于L,EM⊥AB于M,延长DE交BC于N,则EN⊥BC.
EL=PEsin∠LPE=x=x,
EM=DEsin∠EDM=x=x,
EN=DN﹣DE=DBsin∠B﹣AP=(6﹣x)﹣x=6﹣x﹣x=6﹣x.
∵0<x<4,
∴x≠x,即EL≠EM.
当EL=EN时,E在∠ACB的平分线上,
有x=6﹣x,解得x=3,符合题意;
当EM=EN时,E在∠ABC的平分线上,
有x=6﹣x,解得x=,符合题意;
②当E在△ABC外部时,4<x≤6,过E作EL⊥AC交AC延长线于L,EM⊥AB于M,易知EG⊥BC.
EL=GC=ADsin∠A=x=x,
EM=DEsin∠EDM=x=x,
EG=DE﹣DG=AP﹣DBsin∠B=x﹣(6﹣x)=x﹣(6﹣x)=x﹣6.
∵4<x≤6,
∴x≠x,即EL≠EM.
当EL=EG时,E在∠ACB的外角的角平分线上,
有x=x﹣6,解得x=6,符合题意;
当EM=EG时,E在∠ABC的外角的角平分线上,
有x=x﹣6,解得x=>6,不合题意舍去.
综上所述,点E到△ABC任意两边所在直线距离相等时x的值为3,6,.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面积为45,△ADC的面积为20,则△ABD的面积为( ).
A.20B.18C.16D.25
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.
(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿直线x=3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N都相交,且只有两个交点,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
甲 | 乙 | |
进价(元/部) | 4000 | 2500 |
售价(元/部) | 4300 | 3000 |
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.
(毛利润=(售价﹣进价)×销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,垂直平分,分别交、于点、,垂直平分,分别交,于点、.
⑴如图①,若,求的度数;
⑵如图②,若,求的度数;
⑶若,直接写出用表示大小的代数式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线与交于A,B两点,且点A的横坐标为4,过原点O的另一条直线l交双曲线于P,Q两点(点P在第一象限),由点A,B,P,Q为顶点组成的四边形面积为24,则点P的坐标为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足表达式y1=下图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数表达式.
(1)试确定每千克销售价格y2与产量x之间的函数表达式,并写出自变量的取值范围;
(2)若用w(单位:元)表示销售该农产品的利润,试确定w与产量x之间的函数表达式;
(3)求销售量为70 kg时,销售该农产品是赚钱,还是亏本?赚钱或亏本了多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com