精英家教网 > 初中数学 > 题目详情
13.分解因式:(a+b)2-a(a+b)=b(a+b).

分析 直接提取公因式(a+b),进而分解因式得出答案.

解答 解:(a+b)2-a(a+b)
=(a+b)[(a+b)-a}
=b(a+b).
故答案为:b(a+b).

点评 此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:$(\frac{x}{2x+4}+\frac{1}{x-2})$÷$\frac{{x}^{2}+4}{x+2}$,其中x=1010.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,要测量凉亭C到河岸AD的距离,在河岸相距200米的A,B两点,分别测得∠CAB=30°,∠CBD=60°,则凉亭C到河岸AD的距离为(  )
A.100米B.100$\sqrt{3}$米C.200米D.200$\sqrt{3}$米

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图:AC∥ED,∠A=∠EDF,试说明AB∥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB、AC、AE、ED、EC、DB中,相互平行的线段有(  )
A.1组B.2组C.3组D.4组

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.“数形结合”和“建模思想”是数学中的两个很重要的思想方法,先阅读以下材料,然后解答后面的问题.
例:求代数式$\sqrt{{x}^{2}+{3}^{2}}+\sqrt{(12-x)^{2}+{2}^{2}}$的最小值.
解析:$\sqrt{{x}^{2}+{3}^{2}}$和$\sqrt{(12-x)^{2}+{2}^{2}}$是勾股定理的形式,$\sqrt{{x}^{2}+{3}^{2}}$是直角边分别是x和3的直角三角形的斜边,$\sqrt{(12-x)^{2}+{2}^{2}}$是直角边分别是12-x和2的直角三角形的斜边,因此,我们构造两个直角三角形△ABC和△DEF,并使直角边BC和EF在同一直线上(图1)向右平移直角三角形ABC使点B和E重合(图2),这时CF=x+12-x=12,AC=3,DF=2,问题就变成“点B在线段CF的何处时,AB+DB最短?”,根据两点间线段最短,得到线段AD就是它们的最小值.
小结:本题利用代数式$\sqrt{{x}^{2}+{3}^{2}}+\sqrt{(12-x)^{2}+{2}^{2}}$的形式特点,把它转化成为两个直角三角形的问题,从而利用已学过的几何知识来解决这个代数式问题,这就是建模思想与数形结合思想,回答下面问题:
(1)请你完成例题的解答;
(2)变式训练:求代数式$\sqrt{{x}^{2}+16}$+$\sqrt{(10-x)^{2}+4}$的最小值;
(3)拓展练习:解方程$\sqrt{9-{x}^{2}}$+$\sqrt{16-{x}^{2}}$=5(利用几何方法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,菱形ABCD的中心是坐标原点,且AD∥x轴,点A的坐标为(-4,3),那么C点的坐标为(  )
A.(4,-3)B.(3,-4)C.(4,-4)D.(3,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4),与线段BC交于点D,直线y=-$\frac{1}{2}$x+b过点D,与线段AB相交于点F.
(1)求点F的坐标;
(2)连接OF、OE,探究∠AOF与∠EOC的数量关系,并证明;
(3)在x轴上找两点M,N,使MN=2,且使四边形AMND周长最小,求M,N两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程:
(1)5x=3(x-6);
(2)3x+$\frac{x-1}{2}$=3-$\frac{2x-1}{3}$;
(3)$\frac{3}{4}[\frac{4}{3}(\frac{1}{4}x-1)+8]=\frac{7}{3}+\frac{2}{3}x$.

查看答案和解析>>

同步练习册答案