精英家教网 > 初中数学 > 题目详情
14.如图1,在Rt△ABC中∠C=90°,AC=6,BC=8,点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ.已知点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)用含t的代数式表示:QB=8-2t,PD=$\frac{4}{3}$t;
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变匀速运动的点Q的速度,使四边形PDBQ在某一时刻为菱形,请求出点Q的速度;
(3)如图2,在整个P、Q运动的过程中,点M为线段PQ的中点,请确定点M经过的路径长.

分析 (1)根据题意得:CQ=2t,PA=t,由Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,即可得tanA=$\frac{PD}{PA}$=$\frac{BC}{AC}$=$\frac{4}{3}$,则可求得QB与PD的值;
(2)易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ是平行四边形,即可求得此时DP与BD的长,由DP≠BD,可判定?PDBQ不能为菱形;然后设点Q的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD=BQ,列方程即可求得答案;
(3)设E是AC的中点,连接ME.当t=4时,点Q与点B重合,运动停止.设此时PQ的中点为F,连接EF,由△PMN∽△PQC.利用相似三角形的对应边成比例,即可求得答案.

解答 解:(1)根据题意得:CQ=2t,PA=t,
∴QB=8-2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA=$\frac{PD}{PA}$=$\frac{BC}{AC}$=$\frac{4}{3}$,
∴PD=$\frac{4}{3}$t.
故答案为:(1)8-2t,$\frac{4}{3}$t.

(2)不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
∴$\frac{AD}{AB}$=$\frac{AP}{AC}$,即$\frac{AD}{10}$=$\frac{t}{6}$,
∴AD=$\frac{5}{3}$t,
∴BD=AB-AD=10-$\frac{5}{3}$t,
∵BQ∥DP,
∴当BQ=DP时,四边形PDBQ是平行四边形,
即8-2t=$\frac{4t}{3}$,解得:t=$\frac{12}{5}$.
当t=$\frac{12}{5}$时,PD=$\frac{4}{3}$×$\frac{12}{5}$=$\frac{16}{5}$,BD=10-$\frac{5}{3}$×$\frac{12}{5}$=6,
∴DP≠BD,
∴?PDBQ不能为菱形.
设点Q的速度为每秒v个单位长度,
则BQ=8-vt,PD=$\frac{4}{3}$t,BD=10-$\frac{5}{3}$t,
要使四边形PDBQ为菱形,则PD=BD=BQ,
当PD=BD时,即$\frac{4}{3}$t=10-$\frac{5}{3}$t,解得:t=$\frac{10}{3}$,
当PD=BQ,t=$\frac{10}{3}$时,即$\frac{4}{3}$×$\frac{10}{3}$=8-$\frac{10}{3}$v,解得:v=$\frac{16}{15}$;
当点Q的速度为每秒$\frac{16}{15}$个单位长度时,经过$\frac{10}{3}$秒,四边形PDBQ是菱形.

(3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.
依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).
设直线M1M2的解析式为y=kx+b,
∴$\left\{\begin{array}{l}{3k+b=0}\\{k+b=4}\end{array}\right.$,
解得 $\left\{\begin{array}{l}{k=-2}\\{b=6}\end{array}\right.$,
∴直线M1M2的解析式为y=-2x+6.
∵点Q(0,2t),P(6-t,0)
∴在运动过程中,线段PQ中点M3的坐标($\frac{6-t}{2}$,t).
把x=$\frac{6-t}{2}$代入y=-2x+6得y=-2×$\frac{6-t}{2}$+6=t,
∴点M3在直线M1M2上.
过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.
∴M1M2=2$\sqrt{5}$,
∴线段PQ中点M所经过的路径长为2$\sqrt{5}$单位长度.

点评 此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.已知3x-6<0,请写出一个满足条件的x的值x=1.(写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ有(  )次平行于AB?
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.点P(-2,1)是平面直角坐标系中的一点,将点P向左平移3个单位长度,再向下平移4个单位长度,得到点P′的坐标是(-5,-3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.“国际无烟日”来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图所示统计图,请根据图中的信息回答下列问题:

(1)被调查者中,不吸烟者中赞成“彻底禁烟”的人数有82人;
(2)本次抽样调查的样本容量为200;
(3)被调查中,希望建立吸烟室的人数有56人;
(4)某市现有人口约30万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有15.9万人.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.幸福乡要修建一条灌溉水渠,如图,水渠从A村沿北偏东60°的方向到B村,从B村沿北偏西30°方向到C村.若水渠从C村沿CD方向修建可以保持与AB的方向一致,则∠DCB的度数为90°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(2x-3y)(4x2-9y2)(-2x-3y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.
(1)则∠BAE=40°;
(2)求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.
(1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′;
(2)利用网格在图中画出△ABC的中线CD,高线AE;
(3)△A′B′C′的面积为8.
(4)在平移过程中线段BC所扫过的面积为32.
(5)在右图中能使S△PBC=S△ABC的格点P的个数有9个(点P异于A).

查看答案和解析>>

同步练习册答案