精英家教网 > 初中数学 > 题目详情
如图①,正方形ABCD中,∠FOE=90°,顶点O与D点重合,交直线BC于E,交直线BA于F.
(1)求证:OF=OE;
(2)如图②,若O点在射线BD上运动,其它条件不变,上述结论是否仍然成立?画出图形,直接写出结论;
(3)如图③,O为正方形ABCD对角线的中点,∠FOE=90°且绕点O旋转,交BC、CD边于F、E点.(1)中的结论是否仍然成立?请说明理由.
(1)∵∠EDC=∠FDA,∠C=∠FAD,OC=OA,
∴△OEC≌△OFA,
∴OF=OE.(3分)

(2)OF=OE仍然成立.(4分)
如图:作OH⊥AF,OG⊥EC,
根据旋转不变性可知,∠FOH=∠EOG,
易得,OH=OG,
又∵∠FHO=∠GEO,
∴△FHO≌△EGO,
∴OF=OE.(6分)

(3)作OM⊥BC于M,ON⊥CD于N,
∴∠OMF=∠ONE,OM=ON=
1
2
CD,∠MOF=∠NOE=90°-∠FON,
∴△OMF≌△ONE,
∴OF=OE.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.
(1)当△BEF是等边三角形时,求BF的长;
(2)求y与x的函数解析式,并写出它的定义域;
(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,AB=1,E、F分别是BC、CD边上点,若CE=
1
2
CB,CF=
1
2
CD,则图中阴影部分的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知直角三角形ABC,∠ABC=90°,AB=3,BC=5,以AC为边向外作正方形ACEF,则这个正方形的中心O到点B的距离为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法错误的是(  )
A.有一个角为直角的菱形是正方形
B.有一组邻边相等的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线相等且互相垂直的四边形是正方形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,AD⊥BC于点D,∠BAC=45°,BD=3,DC=2,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=______度;
(2)如图2,在等腰梯形ABCD中,已知ABCD,BC=CD,∠ABC=60度.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针顺序),P为DE的中点,连接PC、PF.
(1)如图(1),E点在边BC上,则线段PC、PF的数量关系为______,位置关系为______(不需要证明).
(2)如图(2),将△BEF绕B点顺时针旋转α°(0<α<45),则线段PC、PF有何数量关系和位置关系?请写出你的结论并证明.
(3)如图(3),E点旋转到图中的位置,其它条件不变,完成图(3),则线段PC、PF有何数量关系和位置关系?直接写出你的结论,不需要证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为(  )
A.7B.5C.4D.3

查看答案和解析>>

同步练习册答案