精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,A(﹣15),B(﹣10),C(﹣43).

1)在图中的点上标出相应字母ABC,并求出ABC的面积;

2)在图中作出ABC关于y轴的对称图形A1B1C1

3)写出点A1B1C1的坐标.

【答案】1)如图所示,7.5;(2)如图所示;(3)(15),(10),(43

【解析】

1)直接利用平面直角坐标系得出各点坐标,求面积时把AB作为底,点CAB的距离作为高即可;

分别作出点ABC关于y轴的对称的点,然后顺次连接;

利用关于y轴对称点的性质得出对应点坐标即可;

解:(1)如图所示,

三角形ABC的面积为: 53=7.5.

如图所示,

3)∵A(﹣15),B(﹣10),C(﹣43),且点A1B1C1A,B,C关于y轴对称,

∴点A1B1C1的坐标分别为(15),(10),(43

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】端午节吃粽子是中华民族的传统习惯.农历五月初五早晨,小王的妈妈用不透明袋子装着一些粽子(粽子除食材不同外,其他一切相同),其中糯米粽两个,还有一些薯粉粽,现小王从中任意拿出一个是糯米粽的概率为

(1)求袋子中薯粉粽的个数;

(2)小王第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树形图或列表法,求小王两次拿到的都是薯粉粽的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市启动了第二届美丽港城美在阅读全民阅读活动.为了解市民每天的阅读时间情况,随机抽取了部分市民进行调查.根据调查结果绘制如下尚不完整的频数分布表:

(1) 补全表格;

(2) 将每天阅读时间不低于 的市民称为阅读爱好者.若我市约有 万人,请估计我市能称为阅读爱好者的市民约有多少万人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,某超市在五月初五端午节来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.

1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;

2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?

3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数分别填入相应的集合例

-2.5-0.151515…08 -0.5252252225…(每两个5之间依次增加12

正数:{___________________________________________________…};

负分数:{___________________________________________________…};

整数:{___________________________________________________…}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.

(1)求抛物线C1,C2的函数表达式;

(2)求A、B两点的坐标;

(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,双曲线y=x0)经过OAB的顶点AOB的中点CABx轴,点A的坐标为(23),BEx轴,垂足为E

1)确定k的值;

2)若点D3m)在双曲线上,求直线AD的解析式;

3)计算OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx4k0)的图象与y轴交于点A,与反比例函数yx0)的图象交于点B6b).

1b__________k__________

2)点C是直线AB上的动点(与点AB不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,当点C的横坐标为3时,得OCD,现将OCD沿射线AB方向平移一定的距离(如图),得到OCD,若点O的对应点O落在该反比例函数图象上,求点OD的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:

(1)若设每件降价x元、每星期售出商品的利润为y元,请写出yx的函数关系式,并求出自变量x的取值范围;

(2)当降价多少元时,每星期的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案