分析 (1)在RT△ABO中,利用勾股定理即可解决.
(2)设点H是△ABC的外接圆的圆心,连接HB、HC、HA,OH交BC于点E,先证明△BHE∽△OAB,得$\frac{BH}{AO}$=$\frac{BE}{BO}$,由$\frac{d}{BC}$=$\frac{BH}{BE}$=$\frac{AO}{BO}$,即可解决问题.
解答 解:(1)如图,∵AB切⊙O于点B,
∴OB⊥AB,
在Rt△ABO中,OB=1,OA=AC+OC=3,
∴AB=$\sqrt{O{A}^{2}-O{B}^{2}}$=2$\sqrt{2}$;
(2)设点H是△ABC的外接圆的圆心,连接HB、HC、HA,OH交BC于点E,
∵OB=OC,HB=HC,
∴OH垂直平分BC,
∴BE=EC,HE⊥BC,
∴∠BHE=∠CHE,
∴∠CAB=$\frac{1}{2}$∠BHC=∠BHE,
∵∠BEH=∠ABO=90°,
∴△BHE∽△OAB,
∴$\frac{BH}{AO}$=$\frac{BE}{BO}$,
∵AC=nOC,
∴$\frac{BH}{BE}$=$\frac{AO}{BO}$=$\frac{OC+nOC}{Oc}$=n+1,
∴$\frac{d}{BC}$=$\frac{BH}{BE}$=n+1.
点评 本题考查切线的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 60 | B. | 90 | C. | 144 | D. | 169 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ($\sqrt{2}$)n-1 | B. | ($\sqrt{2}$)n | C. | ($\sqrt{2}$)n+1 | D. | 2n |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com