精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则cos∠BAD=
5
3
5
3
分析:由AD⊥BC得到∠ADB=90°,根据等角的余角相等得到∠C=∠BAD,在△ABC中,利用勾股定理可计算出AC,然后根据余弦的定义得到cosC,即可得到cos∠BAD.
解答:解:∵AD⊥BC,
∴∠ADB=90°,
∴∠C=∠BAD,
在△ABC中,∠BAC=90°,AB=2,BC=3,
∴AC=
BC2-AB2
=
32-22
=
5

∴cosC=
AC
BC
=
5
3

∴cos∠BAD=
5
3

故答案为
5
3
点评:本题考查了余弦的定义:在直角三角形中,一锐角的余弦等于它的邻边与斜边的比值.也考查了勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案