精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).
(1)当x=______时,PQ⊥AC,x=______时,PQ⊥AB;
(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式为______
【答案】分析:(1)若使PQ⊥AC,则根据路程=速度×时间表示出CP和CQ的长,再根据30度的直角三角形的性质列方程求解;
若使PQ⊥AB,则根据路程=速度×时间表示出BP,BQ的长,再根据30度的直角三角形的性质列方程求解;
(2)首先画出符合题意的图形,再根据路程=速度×时间表示出BP,CQ的长,根据等边三角形的三线合一求得PD的长,根据30度的直角三角形的性质求得PD边上的高,再根据面积公式进行求解;
(3)根据三角形的面积公式,要证明AD平分△PQD的面积,只需证明O是PQ的中点.根据题意可以证明BP=CN,则PD=DN,再根据平行线等分线段定理即可证明;
(4)根据(1)中求得的值即可分情况进行讨论.
解答:解:(1)
当Q在AB上时,显然PQ不垂直于AC,
当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4-x;
∵AB=BC=CA=4,
∴∠C=60°;
若PQ⊥AC,则有∠QPC=30°,
∴PC=2CQ,
∴4-x=2×2x,
∴x=
当x=(Q在AC上)时,PQ⊥AC;
如图:①
当PQ⊥AB时,BP=x,BQ=,AC+AQ=2x;
∵AC=4,
∴AQ=2x-4,
∴2x-4+x=4,
∴x=
故x=时PQ⊥AB;

(2)y=-x2+x,
如图②,当0<x<2时,P在BD上,Q在AC上,过点Q作QN⊥BC于N;
∵∠C=60°,QC=2x,
∴QN=QC×sin60°=x;
∵AB=AC,AD⊥BC,
∴BD=CD=BC=2,
∴DP=2-x,
∴y=PD•QN=(2-x)•x=-x2+x;

(3)当0<x<2时,在Rt△QNC中,QC=2x,∠C=60°;
∴NC=x,
∴BP=NC,
∵BD=CD,
∴DP=DN;
∵AD⊥BC,QN⊥BC,
∴AD∥QN,
∴OP=OQ,
∴S△PDO=S△DQO
∴AD平分△PQD的面积;

(4)显然,不存在x的值,使得以PQ为直径的圆与AC相离,
当x=时,以PQ为直径的圆与AC相切,
当0≤x<<x<<x≤4时,以PQ为直径的圆与AC相交.
点评:此题综合运用了等边三角形的性质、直角三角形的性质以及直线和圆的位置关系求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案