分析 (1)利用同弦所对的圆周角是所对圆心角的一半求解.
(2)由A、B、C、D共圆,得出∠BDC=∠BAC,
(3)如图3,作△ABC的外接圆,过圆心O作OE⊥BC于点E,作OF⊥AD于点F,连接OA、OB、OC.利用圆周角定理推知△BOC是等腰直角三角形,结合该三角形的性质求得DE=OF=2;在等腰Rt△BOE中,利用勾股定理得到OE=DF=4;则在Rt△AOF中,易得AF=2$\sqrt{7}$,故AD=2$\sqrt{7}$+4.
解答 解:(1)如图1,∵AB=AC,AD=AC,
∴以点A为圆心,点B、C、D必在⊙A上,
∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,
∴∠BDC=$\frac{1}{2}$∠BAC=45°,
故答案是:45;
(2)如图2,取BD的中点O,连接AO、CO.
∵∠BAD=∠BCD=90°,
∴点A、B、C、D共圆,
∴∠BDC=∠BAC,
∵∠BDC=25°,
∴∠BAC=25°,
(3)如图3,作△ABC的外接圆,过圆心O作OE⊥BC于点E,作OF⊥AD于点F,连接OA、OB、OC.
∵∠BAC=45°,
∴∠BOC=90°.
在Rt△BOC中,BC=6+2=8,
∴BO=CO=4$\sqrt{2}$.
∵OE⊥BC,O为圆心,
∴BE=$\frac{1}{2}$BC=4,
∴DE=OF=2.
在Rt△BOE中,BO=4$\sqrt{2}$,BE=4,
∴OE=DF=4.
在Rt△AOF中,AO=4$\sqrt{2}$,OF=2,
∴AF=2$\sqrt{7}$,
∴AD=2$\sqrt{7}$+4.
点评 本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 81cm2 | B. | 18cm2 | C. | 324cm2 | D. | 326cm2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 等腰三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com