精英家教网 > 初中数学 > 题目详情
(2010•海沧区质检)已知如图,在△ABC中,AD⊥BC,中位线EF=5,AD=8,则△ABC的面积是
40
40
分析:由三角形中位线定理即可求出BC的长,再根据三角形的面积公式即可求出△ABC的面积.
解答:解:∵EF是三角形的中位线,
∴EF=
1
2
BC,
∴BC=2EF=10,
∴△ABC的面积=
1
2
×BC×AD=
1
2
×10×8=40,
故答案为:40.
点评:本题考查了三角形中位线的性质定理和三角形的面积公式,属于基础性题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•海沧区质检)抛物线y=x2+2x的顶点坐标是
(-1,-1)
(-1,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•海沧区质检)如图,正方形ABCD的边长为2
2
,E是边AD上的一个动点(不与A重合),BE交对角线于F,连接
DF.
(1)求证:BF=DF;
(2)设AF=x,△ABF面积为y,求y与x的函数关系式,并画出图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•海沧区质检)在某次数字变换游戏中,我们把整数0,1,2,…,100称为“旧数”,游戏的变换规则是:将旧数先平方,再除以100,所得到的数称为“新数”. 例如:旧数26的新数为262÷100=6.76
(1)经过上述规则变换后,有人断言:“按照上述变换规则,所有的新数都小于它的旧数.”你认为这种说法对吗?请说明理由,若不对,请举一反例说明.
(2)请求出按照上述规则变换后减小了最多的旧数(要写出解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•海沧区质检)在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)若AB=AC,∠BAC=90°那么
①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是
CF=BD,CF⊥BD
CF=BD,CF⊥BD
(直接写出结论)
②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.
(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.

查看答案和解析>>

同步练习册答案