精英家教网 > 初中数学 > 题目详情
4.一个三角形的一条边长与这条边上的高的和为8,设该三角形的这条边长为x,面积为y,则y的最大值是(  )
A.4B.8C.12D.16

分析 根据题意表示出这条边上的高,然后根据三角形的面积公式,即可得到二次函数解析式,化成顶点式即可求解.

解答 解:∵三角形的一条边长与这条边上的高的和为8,
∴高为:8-x,
∴y=$\frac{1}{2}$x(8-x)=-$\frac{1}{2}$x2+4x=-$\frac{1}{2}$(x-4)2+8,
∴当x=4时,y有最大值为8.
故选B.

点评 此题主要考查了二次函数的性质,利用面积公式求得y与x的函数关系式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图1,已知AB∥CD,∠B=30°,∠D=120°;
(1)若∠E=60°,则∠F=90°;
(2)请探索∠E与∠F之间满足的数量关系?说明理由;
(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程组$\left\{\begin{array}{l}{\sqrt{2}x+y=2}\\{4x-\sqrt{2}y=\sqrt{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限.
(1)若AC所在直线的函数表达式是y=2x+4.
①求AC的长;
②求点B的坐标;
(2)若(1)中AC的长保持不变,点A在y轴的正半轴滑动,点C随之在x轴的负半轴上滑动.在滑动过程中,点B与原点O的最大距离是5+$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,直线DE与直线AB、CD分别交于点E、D、EG平分∠DEB,直线GF与直线AB交于点F,若∠CDE=116°,∠AFG=130°,∠G=8°.判断直线AB、CD是否平行?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图一组平行线,每相邻两条平行线间的距离都相等,△ABC的三个顶点都在平行线上,则图中一定等于$\frac{1}{4}$BC的线段是DE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.为了测算出学校旗杆的高度,爱动脑筋的小明这样设计出了一个方案如图,将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,则旗杆的高度是12米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,已知在矩形ABCD中,AB=13.AD=27,将它沿EF折叠,恰好使得点C落在边A′B′上(点A的对应点位A′,点B的对应点为B′),且把线段A′B′分成4:9两部分(A′C<B′C),A′F与CD相交于点M,则折痕EF的长度为$\frac{13}{3}$$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,正方形ABCD中,E为边CD上的一点,且CE=3DE,连接BE,将△CBE沿BE翻折,使点C落在C′处,延长BC′交AD于点F,连接EF,若AF=7,则线段EF的长为5$\sqrt{13}$.

查看答案和解析>>

同步练习册答案