精英家教网 > 初中数学 > 题目详情
5. 如图,第一象限内的点A、B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且tan∠ACB=$\frac{2}{3}$
求:(1)反比例函数的解析式;
(2)点C的坐标;
(3)sin∠ABC的值.

分析 (1)待定系数法求解可得;
(2)作AE⊥x轴于点E,AE与BC交于点F,则CF=2,根据cot∠ACB=$\frac{2}{3}$=$\frac{CF}{AF}$得AF=3,即可知EF,从而得出答案;
(3)先求出点B的坐标.继而由勾股定理得出AB的长,最后由三角函数可得答案.

解答 解:(1)设反比例函数解析式为y=$\frac{k}{x}$,
将点A(2,4)代入,得:k=8,
∴反比例函数的解析式y=$\frac{8}{x}$;

(2)过点A作AE⊥x轴于点E,AE与BC交于点F,则CF=2,

∵cot∠ACB=$\frac{2}{3}$=$\frac{CF}{AF}$,
∴AF=3,
∴EF=1,
∴点C的坐标为(0,1);

(3)当y=1时,由1=$\frac{8}{x}$可得x=8,
∴点B的坐标为(1,8),
∴BF=BC-CF=6,
∴AB=$\sqrt{B{F}^{2}+A{F}^{2}}$=3$\sqrt{5}$,
∴sin∠ABC=$\frac{AF}{AB}$=$\frac{\sqrt{5}}{5}$.

点评 本题主要考查反比例函数的应用,熟练掌握待定系数法求函数解析式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.先化简$\frac{{x}^{2}-4x+4}{{x}^{2}-2x}$÷(x-$\frac{4}{x}$),然后从0,1,2中任选一个合适的数作为x的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列各图中,∠1与∠2是对顶角的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在边BC上,且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度沿AC向终点运动;点Q以1.25cm/s的速度沿BC向终点C运动,过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为ts(0<t<4).
(1)连接DP,当t>1时,四边形EQDP能够成为平行四边形吗?请说明理由;
(2)连接PQ,在运动过程中,不论t取何值,总有PQ与AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF.
(1)试探究△A′DE的形状,请说明理由;
(2)当四边形EDD′F为菱形时,判断△A′DE与△EFC′是否全等?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知GF=GB,AF=DB,∠A=∠D,求证:CG=EG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP.
(1)求证:△BOQ≌△POQ;
(2)若直径AB的长为12.
①当PE=6时,四边形BOPQ为正方形;
②当PE=6$\sqrt{3}$时,四边形AEOP为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,OD交⊙O于点E,且∠CBD=∠COD.
(1)求证:BD是⊙O的切线;
(2)若点E为线段OD的中点,判断以O、A、C、E为顶点的四边形的形状并证明;
(3)如图2,作CF⊥AB于点F,连接AD交CF于点G,求$\frac{FG}{FC}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.一小区大门的栏杆如图所示,当栏杆抬起时,BA垂直于地面AE,CD平行于地面AE,则∠ABC+∠BCD的度数为(  )
A.180°B.270°C.300°D.360°

查看答案和解析>>

同步练习册答案