精英家教网 > 初中数学 > 题目详情

如图,已知直线与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.

(1)点C的坐标是     ,线段AD的长等于     
(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.

解:(1)(0,3);4。
(2)
(3)抛物线上存在点P,使得以C,E,F,P为顶点的四边形是菱形。

解析试题分析:(1)首先求出图象与x轴交于点A,与y轴交于点B的坐标,进而得出C点坐标以及线段AD的长:
与x轴交于点A,与y轴交于点B,
∴y=0时,x=﹣3,x=0时,y=1。
∴A点坐标为:(﹣3,0),B点坐标为:(0,1)。
∴OC=3,DO=1。
∴点C的坐标是(0,3),线段AD的长等于4。
(2)首先得出点M是CD的中点,即可得出M点坐标,进而利用待定系数法求二次函数解析式。
∵CM=OM,∴∠OCM=∠COM。
∵∠OCM+∠ODM=∠COM+∠MOD=90°,∴∠ODM=∠MOD。∴OM=MD=CM。
∴点M是CD的中点,∴点M的坐标为()。
∵抛物线y=x2+bx+c经过点C,M,
,解得:
∴抛物线y=x2+bx+c的解析式为:
(3)分别根据当点F在点C的左边时以及当点F在点C的右边时,分析四边形CFPE为菱形得出即可。
情形1:如图1,当点F在点C的左边时,四边形CFEP为菱形,

∴∠FCE=PCE。
由题意可知,OA=OC,∴∠ACO=∠PCE=45°。
∴∠FCP=90°。∴菱形CFEP为正方形。
过点P作PH⊥CE,垂足为H,
则Rt△CHP为等腰直角三角形。
∴CP=CH=PH。
设点P为(x,),则OH=,PH=x,
∵PH=CH=OC﹣OH,∴,解得:x1=, x2=0(舍去)。
∴CP=CH=
∴菱形CFEP的周长l为:
情形2:如图2,当点F在点C的右边时,四边形CFPE为菱形,

∴CF=PF,CE∥FP。
∵直线AC过点A(﹣3,0),点C(0,3),
∴直线AC的解析式为:y=x+3。
过点C作CM⊥PF,垂足为M,
则Rt△CMF为等腰直角三角形,CM=FM。
延长PF交x轴于点N,则PN⊥x轴,
∴PF=FN﹣PN。
设点P为(x,),则点F为(x,x+3),

,解得:,x2=0(舍去)。

∴菱形CFEP的周长l为:)。
综上所述,这样的菱形存在,它的周长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.

(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.

(1)写出这个二次函数的对称轴;
(2)设这个二次函数的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AD、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式。
[提示:如果一个二次函数的图象与x轴的交点为A,那么它的表达式可表示为:]

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC中,AB=BC,AC=8,tanA=k,P为AC边上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.

(1)证明:△PCE是等腰三角形;
(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;
(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).

(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)试判断△AOC与△COB是否相似?并说明理由;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:直线过抛物线的顶点P,如图所示.

(1)顶点P的坐标是     
(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年浙江义乌10分)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数.下表提供了部分采购数据.

采购数量(件)
1
2

A产品单价(元/件)
1480
1460

B产品单价(元/件)
1290
1280

(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元.求该商家共有几种进货方案;
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完.在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

直线与x、y轴分别交于点A、C.抛物线的图象经过A、C和点B(1,0).

(1)求抛物线的解析式;
(2)在直线AC上方的抛物线上有一动点D,当D与直线AC的距离DE最大时,求出点D的坐标,并求出最大距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,若二次函数的图象与x轴交于点A(-2,0),B(3,0)两点,点A关于正比例函数的图象的对称点为C。
(1)求b、c的值;
(2)证明:点C 在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数的图象于点D,连结AC,交正比例函数的图象于点E,连结AD、CD。如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动,当其中一个到达终点时,另一个随之停止运动,连结PQ、QE、PE,设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC,若存在,求出t的值;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案