精英家教网 > 初中数学 > 题目详情
已知直角坐标平面上点A(2,0),P是函数y=x(x>0)图象上一点,PQ⊥AP交y轴正半轴于点Q(如图).
(1)试证明:AP=PQ;
(2)设点P的横坐标为a,点Q的纵坐标为b,那么b关于a的函数关系式是______;
(3)当S△AOQ=
2
3
S△APQ
时,求点P的坐标.
(1)过P作x轴、y轴的垂线,垂足分别为H、T
∵点P在函数y=x(x>0)的图象上,
∴PH=PT,PH⊥PT.(1分)
∵AP⊥PQ,
∴∠APH=∠QPT.
又∠PHA=∠PTQ,
∴△PHA≌△PTQ,(1分)
∴AP=PQ. (1分)

(2)根据题意得 AH=2-a=TQ.
∵OQ+TQ=OT=OH,
∴b+2-a=a,
b=2a-2.
故答案为 b=2a-2.(2分)

(3)由(1)、(2)知,
S△AOQ=
1
2
OA×OQ=2a-2
S△APQ=
1
2
AP2=a2-2a+2
,(1分)
2a-2=
2
3
(a2-2a+2)

解得 a=
5
2
,(1分)
所以点P的坐标是(
5-
5
2
5-
5
2
)
(
5+
5
2
5+
5
2
)
.(1分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线y=2x+4分别与x轴、y轴交于A、B两点,在此直线上有一点P,坐标是(-
4
5
12
5
)
,过点P的直线交y轴于点E,交x轴于点F,F点的坐标为(4,0).
(1)求直线EF的解析式.
(2)求证:AB=EF.
(3)请你判断△APF是否是直角三角形,并说出理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过(2,5)和(-1,-1)两点,
(1)求这个一次函数解析式;
(2)求出此函数与坐标轴围成的三角形面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一束光线从点A(3,3)出发,经Y轴上点c反射后正好经过点B(1,0),则点C在Y轴上的位置为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5
5
,且tan∠EDA=
3
4

(1)判断△OCD与△ADE是否相似?请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,直线AB交x轴于点A,交y轴于点B,点C、E在直线AB上,过点C作直线AB的垂线交y轴于点D,且OD=CD=CE.点C的坐标为(a,b),a、b(a>b)是方程x2-12x+32=0的解.
(1)求DC的长;
(2)求直线AB的解析式;
(3)在x轴的正半轴上是否存在点Q,使△OCB和△OCQ相似?若存在,请直接写出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴的负半轴上,∠CAO=30°,OA=4.
(1)求点C的坐标;
(2)如图,将△ACB绕点C按顺时针方向旋转30°到△A′CB′的位置,其中A’C交直线OA于点E,A’B’分别交直线OA、CA于点F、G,则除△A′B′C≌△AOC外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)
(3)在(2)的基础上,将△A′CB′绕点C按顺时针方向继续旋转,当△COE的面积为
3
4
时,求直线CE的函数表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1,y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.
(1)试用文字说明:交点P所表示的实际意义.
(2)试求出A,B两地之间的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如果y+2与x+1成正比例,当x=1时,y=-5.
(1)求出y与x的函数关系式.(2)自变量x取何值时,函数值为4?

查看答案和解析>>

同步练习册答案