精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(3,0),B(0,4),则点B100的坐标为

【答案】(600,4)
【解析】解:∵AO=3,BO=4,
∴AB=5,
∴OA+AB1+B1C2=3+5+4=12,
∴B2的横坐标为:12,且B2C2=4,
∴B4的横坐标为:2×12=24,
∴点B100的横坐标为:50×12=600.
∴点B100的纵坐标为:4.
故答案为:(600,4).
首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差12个单位长度,根据这个规律可以求得B100的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市启动了第二届“美丽港城,美在阅读”全民阅读活动,为了解市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制如下尚不完整的频数分布表:

阅读时间
x(min)

0≤x<30

30≤x<60

60≤x<90

x≥90

合计

频数

450

400

50

频率

0.4

0.1

1


(1)补全表格;
(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”,若我市约有500万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:
(1)[﹣4.5]= , <3.5>=
(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是
(3)已知x,y满足方程组 ,求x,y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点AABx轴,垂足为点A,过点CCBy轴,垂足为点C,两条垂线相交于点B.

(1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   

(2)折叠图1中的ABC,使点A与点C重合,再将折叠后的图形展开,折痕DEAB于点D,交AC于点E,连接CD,如图2.

请从下列A、B两题中任选一题作答,我选择   题.

A:①求线段AD的长;

②在y轴上,是否存在点P,使得APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

B:①求线段DE的长;

②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数图象的顶点在原点,直线y= x+4的图象与该二次函数的图象交于点A(m,8),直线与x轴的交点为C,与y轴的交点为B.

(1)求这个二次函数的解析式与B点坐标;
(2)P为线段AB上的一个动点(点P与A,B不重合),过P作x轴的垂线与这个二次函数的图象的交于点D,与x轴交于点E,设线段PD长为h,点P的横坐标为t,求h与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段AB上是否存在点P.使得以点P,E,B为顶点的三角形为等腰三角形?若存在,请直接写P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,平分,则图中共有等腰三角形( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直角三角形中,,直线过点.

(1)当时,如图1,分别过点直线于点直线于点.是否全等,并说明理由;

(2)当时,如图2,点与点关于直线对称,连接.上一点,点上一点,分别过点直线于点直线于点,点点出发,以每秒的速度沿路径运动,终点为.从点出发,以每秒的速度沿路径运动,终点为.同时开始运动,各自达到相应的终点时停止运动,设运动时间为.

①当为等腰直角三角形时,求的值;

②当全等时,求的值.

1 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.

我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.

请你在图2中用三种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,除公共边外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使全等:

________________

________________

________

________

查看答案和解析>>

同步练习册答案