如图,AB是⊙O的直径,点A、C、D在⊙O上,BP是⊙O的切线,连接PD并延长交⊙O于F、交AB于E,若∠BPF=∠ADC.
(1)判断直线PF与AC的位置关系,并说明你的理由;
(2)当⊙O的半径为5,tan∠P=,求AC的长.
(1)PF∥AC,证明见解析;(2).
【解析】
试题分析:(1)连接BC,则∠ACB=90°.由BP是圆O的切线知:∠ABC+∠PBC=90°;而∠ABC=∠ACB=∠P,所以∠P+∠PBC=90°,则三角形内角和定理可知∠PHB=90°,即PF∥AC;
(2)在Rt△ABC中,由tan∠P=tan∠D=tan∠ABC=设AC=x,BC=2x,根据勾股定理可求出x的值.
试题解析:(1)连接BC,交PF于H,则∠ACB=90°,∠ABC=∠ADC.
又∵∠BPF=∠ADC.
∴∠ABC=∠ADC=∠BPF
∵BP是⊙O的切线
∴∠PBC+∠ABC=90°
∴∠P+∠PBC=90°
∴∠PHB=90°
∴∠FHC=∠ACB=90°
∴PF∥AC;
(2)由(1)知:∠ABC=∠ADC=∠BPF
∴tan∠D=tan∠ABC=tan∠P=
设AC=x,BC=2x,则:
∴
解得:,
即AC=
考点: 1.平行线的判定;2.解直角三角形.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:初中数学解题思路与方法 题型:047
已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com