如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点.
(1)试说明四边形AECG是平行四边形;
(2)若矩形的一边AB的长为3cm,当BC的长为多少时,四边形AECG是菱形?
(1)说明详见解析;(2).
【解析】
试题分析:本题考查的知识点较多,有矩形的性质、勾股定理、平行四边形的性质、菱形的性质、翻折变换(轴对称)等知识点.灵活掌握和应用这些性质、定理是解题的关键.
因为对折,所以 ,,又,可得AG//CE,即可得出四边形AECG是平行四边形.
由菱形的定义之可知F,H两点重合,可得出AC=2BC,由此可计算边BC的长.
试题解析:
解:(1)由题意,得∠GAH=∠DAC, ∠ECF=∠BCA(1分)
∵四边形ABCD为矩形
∴AD∥BC
∴∠DAC=∠BCA
∴∠GAH=∠ECF
∴AG∥CE(2分)
又∵AE∥CG
∴四边形AECG是平行四边形.
∵四边形AECG是菱形
∴F、H重合
∴AC=2BC(4分)
在Rt△ABC中,设BC=x,则AC=2x
在Rt△ABC中
即,
解得x=,(x=舍去)
即线段BC的长为cm.
考点:1、平行四边形的判定.2、菱形的性质.3、勾股定理.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com