精英家教网 > 初中数学 > 题目详情

【题目】如图,直线l与△ABC在边长为1个单位长度的小正方形网格中,点A,B,C都为网格线的交点.

(1)请画出△ABC关于直线l对称的△A1B1C1(点A,B,C的对称点分别为A1,B1,C1).

(2)请画出将线段AC向左平移3个单位,再向下平移5个单位得到的线段A2C2(点A,C的对应点分别为A2,C2),再以A2C2为斜边画一个等腰直角三角形A2B2C2

【答案】(1)见解析;(2)见解析.

【解析】

(1)根据轴对称的定义作出对应点,再顺次连接可得;

(2)先根据平移的定义作出平移后的对应点,再连接可得线段,根据等腰直角三角形的定义结合网格可得答案.

(1)如图所示,A1B1C1即为所求;

(2)如图所示,A2C2A2B2C2A2B′2C2即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是某月的日历表,在此目历表上可以用一个字圈出5个数.

(1)如图中四周的4个数3、9、17、11的和与中间的数10有什么数量关系?

(2)照此方法,任意圈出的5个数是否都具有这样的数量关系?请通过整式的运算说明理由.

(3)(2)的结论说明圈出的5个数的和能否等于125?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某同学在大楼AD的观光电梯中的E点测得大楼BC楼底C点的俯角为45°,此时该同学距地面高度AE为20米,电梯再上升5米到达D点,此时测得大楼BC楼顶B点的仰角为37°,求大楼的高度BC.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的顶点A的坐标为(0,﹣1),顶点Bx轴的负半轴上,顶点Cy轴的正半轴上,且∠ABC=90°,ACB=30°,线段OC的垂直平分线分别交OC,BC于点D,E.

(1)C的坐标;

(2)P为线段ED的延长线上的一点,连接PC,PA,设点P的横坐标为t,ACP的面积为S,求St的函数关系式;

(3)(2)的条件下,点F为线段BC的延长线上一点,连接OF,若OF=CP,求∠OFP的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,填空:

(1)若∠4=∠3,则_________,理由是______

(2)若∠2=∠E,则_______,理由是____

(3)若∠A=∠ABE=180°,则_______,理由是____

(4)若∠2=∠____,则DA∥EB,理由是____

(5)若∠DBC+∠_____=180°,则DB∥EC,理由是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.

(1)证明:BC∥EF;

(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF平分∠AFE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= (x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是(将正确的结论填在横线上).
①sOEB=sODB , ②BD=4AD,③连接MD,SODM=2SOCE , ④连接ED,则△BED∽△BCA.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.

(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问:的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1 , △NOC的面积为S2 , 求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的推理.

如图,BE平分ABD,DE平分BDC,且α+β=90°,试说明:ABCD.

完成推理过程:

BE平分∠ABD(已知)

∴∠ABD2α(__________)

DE平分∠BDC(已知)

∴∠BDC2β (__________)

∴∠ABD+∠BDC2α2β2(α+∠β)( __________)

∵∠α+∠β90°(已知)

∴∠ABD+∠BDC180°(__________)

ABCD(____________________)

查看答案和解析>>

同步练习册答案