精英家教网 > 初中数学 > 题目详情

【题目】如图,直线ABCD相交于点O,∠BOE=90°OM平分∠AODON平分∠DOE.

1)若∠MOE=27°,求∠AOC的度数;

2)当∠BOD=x°(0<x<90)时,求∠MON的度数.

【答案】154°;(245°.

【解析】

(1)已知∠BOE=90°,根据平角的定义可得∠AOE =90°,又因∠MOE=27°,可求得∠AOM=63°;由OM平分∠AOD,根据角平分线的定义可得∠AOD=2AOM=126°,再由平角的定义即可求得∠AOC=54°;(2)已知∠BOD=x°,即可求得∠AOD=180°-x°,∠DOE=90°-x°;再由M平分∠AODON平分∠DOE,根据角平分线的定义可得∠MOD =180°-x°),∠DON=90°-x°),由∠MON=MOD+DON即可求得∠MON的度数.

(1)∵∠BOE=90°

∴∠AOE=180°-∠BOE=90°,

∵∠MOE=27°

∴∠AOM=90°-MOE=90°-27°=63°,

OM平分∠AOD

∴∠AOD=2AOM=126°,

∴∠AOC=180°-AOD=180°-126°=54°;

2)∵∠BOD=x°

∴∠AOD=180°-x°,

OM平分∠AOD

∴∠MOD=AOD=180°-x°),

∵∠BOE=90°,∠BOD=x°

∠DOE=90°-x°;

ON平分∠DOE

DON=90°-.

∴∠MON=MOD+DON=180°-x°)-90°-x°)=45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正六边形ABCDEF的边长为cm,点P为ABCDEF内的任意一点,点P到正六边形ABCDEF各边所在直线的距离之和为s,则s=_____cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.

(1)求证:四边形ADEF为平行四边形;

(2)当点D为AB中点时,判断ADEF的形状;

(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB-1,2)是一次函数与反比例函数

)图象的两个交点,AC⊥x轴于CBD⊥y轴于D

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?

(2)求一次函数解析式及m的值;

(3)P是线段AB上的一点,连接PCPD,若△PCA△PDB面积相等,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点A23)在反比例函数y的图象上,则下列说法正确的是(  )

A.该函数图象分布在第二、四象限

B.k的值为6

C.该函数图象经过点(1,﹣6

D.若点Ax1y1),Bx2y2)都在该函数图象上,且x1x2,则y1y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,EABBC上的动点,连接CD,DECD+DE的最小值为(

A. 8 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(2,2),B(4,0),C(4,-4).

(1)请在图中画出△ABC向左平移6个单位长度后得到的△A1B1C1

(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧画出△A2B2C2,;

(3)填空:△AA1A2的面积为________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB =40°,∠AOC= BOC,则∠AOC的度数为20°;③若线段AB=3, BC=2,则线段AC的长为15;④若∠a+β=180°,且∠a<β,则∠a的余角为(β-a).其中正确结论的个数(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

同步练习册答案