精英家教网 > 初中数学 > 题目详情
9.已知等腰三角形的两边长分别为5和9,则该等腰三角形的周长为(  )
A.19B.23C.20或23D.19或23

分析 根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为6时,解答出即可.

解答 解:根据题意,
①当腰长为5时,周长=5+5+9=19;
②当腰长为9时,周长=9+9+5=23.
故其周长为19或23,
故答案为:19或23.

点评 本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.如果将电影票上“8排5号”简记为(8,5),那么“11排11号”可表示为(11,11);(5,6)表示的含义是5排6号.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.
(1)若∠E=∠F,求证:∠ADC=∠ABC;
(2)若∠E=∠F=40°,求∠A的度数;
(3)若∠E=30°,∠F=40°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知:如图,在△ABC中,AB=AC且tanA=$\frac{4}{3}$,P为BC上一点,且BP:PC=3:5,E、F分别为AB、AC上的点,且∠EPF=2∠B,若△EPF的面积为6,则EF=2$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=45°,∠C=75°,求∠DAE,∠AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程:
(1)x2+1=4x
(2)$\frac{2}{x-2}$-$\frac{4x}{{x}^{2}-4}$=$\frac{3}{x+2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在一张长方形纸条上画一条数轴.

(1)若折叠纸条,数轴上表示-3的点与表示1的点重合,则折痕与数轴的交点表示的数为-1;
(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为$\frac{a+b}{2}$(用含a,b的代数式表示);
(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如果|y+3|+(2x-4)2=0,那么2x-y的值为(  )
A.1B.-1C.-7D.7

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:
①AE=CF;  
②△EPF是等腰直角三角形;
③S四边形AEPF=$\frac{1}{2}$S△ABC;  
④BE+CF=EF.
⑤当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合).
上述结论中始终正确的有①②③(填序号).

查看答案和解析>>

同步练习册答案