精英家教网 > 初中数学 > 题目详情
如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=
x2
3
(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则
DE
AB
=______.
设设A点坐标为(0,a),(a>0),
则x2=a,解得x=
a

∴点B(
a
,a),
x2
3
=a,
则x=
3a

∴点C(
3a
,a),
∵CDy轴,
∴点D的横坐标与点C的横坐标相同,为
3a

∴y1=
3a
2=3a,
∴点D的坐标为(
3a
,3a),
∵DEAC,
∴点E的纵坐标为3a,
x2
3
=3a,
∴x=3
a

∴点E的坐标为(3
a
,3a),
∴DE=3
a
-
3a

DE
AB
=
3
a
-
3a
a
=3-
3

故答案为:3-
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

正常水位时,抛物线拱桥下的水面宽为20m,水面上升3m达到该地警戒水位时,桥下水面宽为10m.
(1)在恰当的平面直角坐标系中求出水面到桥孔顶部的距离y(m)与水面宽x(m)之间的函数关系式;
(2)如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).
(1)求m的值和抛物线的解析式;
(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);
(3)若抛物线与y轴交于C,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(1,
3
),△AOB的面积是
3

(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
1
2
x2+bx+4
与x轴和y轴的正半轴分别交于点A和B,已知A点坐标为(4,0).
(1)求抛物线的解析式.
(2)如图,连接AB,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)若抛物线y=-
1
2
x2+bx+4
上有一点F(-k-1,-k2+1),当m,n为何值时,∠PMQ的边过点F?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一边靠校园围墙,其他三边用总长为40米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为(  )
A.10米B.15米C.20米D.25米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,墙的最大可用长度为8米,设花圃的宽AB为x米,面积为S平方米.
(1)求S与x的函数关系式;
(2)求自变量的取值范围;
(3)当x取何值时所围成的花圃面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是(  )
A.6B.2
6
C.2
5
D.2
2
+2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D.
(1)求h、k的值;
(2)判断△ACD的形状,并说明理由;
(3)在线段AC上是否存在点M,使△AOM与△ABC相似?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案