【题目】如图,在菱形ABCD中,∠ADC=60°,CD=4cm,P为CD的中点.
(1)在AC上找一点Q,使DQ+PQ的值最小(保留画图痕迹,不写画法,不必说理);
(2)求出(1)中DQ+PQ的长.
【答案】(1)见解析;(2)2cm
【解析】
(1)如图,连接 PB 交 AC 于点 Q,点 Q 是所求作的;
(2)连接 PA.证明△PAB 是直角三角形,利用勾股定理求出 PB 即可;
解:(1)如图,连接 PB 交 AC 于点 Q,点 Q 是所求作的;
(2)连结 AP,
在菱形 ABCD 中,AB=AD=CD=4cm,又∵∠ADC=60°,
∴△ACD 为等边三角形,
∵P 为 CD 的中点,
AP⊥CD,DP= CD=2 cm, 在 Rt△ADP 中,
∴AP==6(cm),
∵AP⊥CD,AB∥CD,
∴AP⊥AB,
在 Rt△ABP 中,BP==(cm),
在菱形 ABCD 中,AC⊥BD,OB=OD
∴DQ=BQ
∴DQ+PQ=BQ+PQ=BP=2(cm).
答:DQ+PQ 的长为 2cm.
科目:初中数学 来源: 题型:
【题目】如图1,已知二次函数(为常数,)的图象过点和点,函数图象最低点的纵坐标为.直线的解析式为
求二次函数的解析式;
直线沿轴向右平移,得直线,与线段相交于点,与轴下方的抛物线相交于点,过点作轴于点,把沿直线折叠,当点恰好落在抛物线上点时(图求直线的解析式;
在的条件下,与轴交于点,把绕点逆时针旋转得到,P为上的动点,当为等腰三角形时,求符合条件的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:
(1)当t为何值时,△BDE的面积为7.5cm2;
(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,.于.为边上的一个(不与、重合)点,且于相交于点.
(1)填空:______;______.
(2)当时,证明:.
(3)面积的最小值是_______.
(4)当的内心在的外部时,直接写出的范围______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:
若n=24,则第2019次“F”运算的结果是( )
A.4B.1C.2018D.42018
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件8元,出厂价为每件10元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3410元,那么政府为他承担的总差价最少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,矩形ABCD中,AB=5,BC=8,点P为BC上一动点(不与端点重合),连接AP,将△ABP沿着AP折叠.点B落到M处,连接BM、CM,若△BMC为等腰三角形,则BP的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了鼓励城市周边的农民的种菜的积极性,某公司计划新建,两种温室80栋,将其售给农民种菜.已知建1个型温室和2个型温室一共需要8.1万元,两种温室的成本和出售价如下表:
型 | 型 | |
成本(万元/栋) | 2.5 | |
出售价(万元/栋) | 3.1 | 3.5 |
(1)求的值;
(2)已知新建型温室不少于38栋不多于50栋且所建的两种温室可全部售出.为了减轻菜农负担,试问采用什么方案建设温室可使利润最少,最少利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com