分析 (1)根据平行线的性质求得∠B=∠EFD,然后依据AAS即可证得△ABC≌△EFD;
(2)根据三角形内角和定理求得∠AMD,然后根据对顶角相等即可求得.
解答 解:(1)∵DE⊥AB于D,
∴∠EDF=90°,
∵∠C=90°,
∴∠C=∠EDF,
∵EF∥BC,
∴∠B=∠EFD,
在△ABC与△EFD中,
$\left\{\begin{array}{l}{∠C=∠EDF}\\{∠B=∠EFD}\\{AC=ED}\end{array}\right.$,
∴△ABC≌△EFD(AAS);
(2)∵∠EDF=90°,
∴∠ADM=180°-∠EDF=90°,
在△ADM中,∠A+∠AMD+∠ADM=180°且∠A=25°
∴∠AMD=180°-∠A-∠ADM=65°,
∴∠EMN=∠AMD=65°.
点评 本题考查了三角形全等的判定与性质,对顶角相等的性质以及三角形内角和定理的应用,熟练掌握性质定理是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com