精英家教网 > 初中数学 > 题目详情

二次函数y=和一次函数y=ax+b在同一坐标系中的图像位置大致是

[  ]

A.
B.
C.
D.
答案:D
解析:

  若a>0,b<0,则一次函数图象过一、三、四象限.二次函数图象开口向上,对称轴在x轴正半轴.A、C两个答案错误.

  若a<0,b>0,则一次函数图象过一、二、四象限.二次函数图象开口向下,对称轴在x轴正半轴.B答案错误

∴只有D答案符合


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•盐都区一模)已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒
5
个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰州一模)已知一次函数y1=2x和二次函数y2=x2+1.
(1)求证:函数y1、y2的图象都经过同一个定点;
(2)求证:在实数范围内,对于任意同一个x的值,这两个函数所对应的函数值y1≤y2总成立;
(3)是否存在抛物线y3=ax2+bx+c,其图象经过点(-5,2),且在实数范围内,对于同一个x的值,这三个函数所对应的函数值y1≤y3≤y2总成立?若存在,求出y3的解析式;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒数学公式个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

科目:初中数学 来源:2013年江苏省盐城市盐都区中考数学一模试卷(解析版) 题型:解答题

已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

科目:初中数学 来源:2012年河南省重点中学中考数学模拟试卷(6月份)(解析版) 题型:解答题

已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

同步练习册答案