精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标xOy中,抛物线ymx2-2mxm-1(m>0)与x轴的交点为A,B,顶点为C,将抛物线在A,C,B之间的部分记为图象E(A,B两点除外).

(1)求抛物线的顶点坐标.

(2)AB=6时,经过点C的直线ykxb(k≠0)与图象E有两个交点,结合函数的图象,求k的取值范围.

(3)若横、纵坐标都是整数的点叫整点.

①当m=1时,求线段AB上整点的个数;

②若抛物线在点A,C,B之间的图象E与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.

【答案】(1)C(1,-1). (2)<k<0,或0<k<.(3)3个或5个;<m≤ .

【解析】试题分析:(1)利用配方法将抛物线解析式变形为顶点式即可得到顶点坐标;(2)当AB=6时,抛物线与x轴的两个交点分别是(-2,0),(4,0),又因为顶点为(-1,1),当直线经过CACB时,分别解得k=± ,即可得k的取值范围;(3)①当时m=1,抛物线表达式为yx2-2x,令y=0,解方程即可得到点A、点B的坐标,再数出线段上的整点数即可;②抛物线顶点为(1,-1),则指定区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令抛物线解析式为0,,解方程得到用m表示的点、横坐标,根据题意得不等式解之即可.

试题解析:

⑴原抛物线解析式为ymx2-2mxm-1(m>0),提取公因式并配方得 ,所以该抛物线的顶点坐标为 (1,-1);

⑵AB=6时,抛物线与x轴的两个交点分别是(-2,0),(4,0),又因为顶点为(-1,1),当直线经过C与A,C与B时,分别解得k=,所以k的取值范围为<k<0,或0<k<.

⑶①当m=1时,抛物线表达式为y=x2-2x,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个.

②抛物线顶点为(1,-1),则指定区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;

令y=mx2-2mx+m-1=0,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,

进而得到2≤<3,所以<m≤ .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.
(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?
(2)若购买甲种树苗的金额不少了购买乙种树苗的金额,则至少应购买甲种树苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆长假里,小华和爸爸、妈妈一家三口去旅游,甲旅行社说:“大人买全票,小孩半价优惠”.乙旅行社说:“大人、小孩全部按票价的八折优惠”.若原票价为α元,问小华家选择哪个旅行社合算,请说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是( )
A.a2+a2=a4
B.(ab)2=ab2
C.a6÷a2=a3
D.(2a23=8a6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:a2b﹣4ab2+4b3=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:

(1)6xy2-9x2yy3; (2)(p-4)(p+1)+3p.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线经过点E(1,0)和F(5,0),并交y轴于D(0,-5);抛物线a≠0),

(1)试求抛物线的函数解析式;

(2)求证: 抛物线 x轴一定有两个不同的交点;

(3)若a=1

①抛物线顶点分别为 ( , )、( , ) ;当x的取值范围是_________ 时,抛物线 上的点的纵坐标同时随横坐标增大而增大;

②已知直线MN分别与x轴、分别交于点Pm,0)、MN,且MNy轴,当1≤m≤5时,求线段MN的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜。

(1)当X=3时,谁获胜的可能性大?

(2)当x为何值时,游戏对双方是公平的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:

(1)这次被调查的学生共有人.
(2)请将统计图2补充完整.
(3)统计图1中B项目对应的扇形的圆心角是度.
(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.

查看答案和解析>>

同步练习册答案