精英家教网 > 初中数学 > 题目详情
精英家教网抛物线y=ax2+bx+c(a≠0)过点A(1,-3),B(3,-3),C(-1,5),顶点为M点.
(1)求该抛物线的解析式;
(2)试判断抛物线上是否存在一点P,使∠POM=90度?若不存在,说明理由;若存在,求出P点的坐标;
(3)试判断抛物线上是否存在一点K,使∠OMK=90°?说明理由.
分析:(1)已知了抛物线上A、B、C三点的坐标,可将三点坐标代入抛物线中,通过联立方程组求出抛物线的解析式.
(2)本题可通过构建相似三角形来求解,过P作PE⊥y轴于E,过M作MF⊥y轴于F,如果∠POM=90°,那么△PEO∽△OFM,那么PE:OF=OE:BF,可根据抛物线的解析式求出M点的坐标,设出P点的坐标,然后根据得出的比例关系式即可求出P点的坐标.
(3)可过M作OM的垂线,设其与y轴的交点为N,如果直线MN与抛物线的交点除了M外还有另外一个,那么此点必为K点,因此关键是求出直线MN的解析式,然后联立抛物线的解析式,看两函数的交点个数即可.
解答:解:(1)根据题意,得
-3=a+b+c
-3=9a+3b+c
5=a-b+c

解得
a=1
b=-4
c=0

∴抛物线的解析式为y=x2-4x.精英家教网

(2)抛物线上存在一点P,使∠POM=90?.
x=-
b
2a
=-
-4
2
=2,y=
4ac-b2
4a
=-4.
∴顶点M的坐标为(2,-4).
设抛物线上存在一点P,满足OP⊥OM,其坐标为(a,a2-4a).
过P点作PE⊥y轴,垂足为E;过M点作MF⊥y轴,垂足为F.
则∠POE+∠MOF=90?,∠POE+∠EPO=90?.
∴∠EPO=∠FOM.
∵∠OEP=∠MFO=90?,
∴Rt△OEP∽Rt△MFO.
∴OE:MF=EP:OF.
即(a2-4a):2=a:4.(7分)
解,得a1=0(舍去),a2=
9
2

∴P点的坐标为(
9
2
9
4
).

(3)过顶点M作MN⊥OM,交y轴于点N.则∠FMN+∠OMF=90?.
∵∠MOF+∠OMF=90?,
∴∠MOF=∠FMN.
又∵∠OFM=∠MFN=90?,
∴△OFM∽△MFN.
∴OF:MF=MF:FN.
即4:2=2:FN.
∴FN=1.
∴点N的坐标为(0,-5).
设过点M,N的直线的解析式为y=kx+b.
-4=2k+b
-5=b

解得
k=
1
2
b=-5

直线的解析式为y=
1
2
x-5.
y=
1
2
x-5,①
y=x2-4x.②

把①代入②,
得x2-
9
2
x+5=0.△=(-
9
2
2-4×5=
81
4
-20=
1
4
>0.
∴直线MN与抛物线有两个交点(其中一点为顶点M).
∴抛物线上必存在一点K,使∠OMK=90°.
点评:本题主要考查二次函数解析式的确定、三角形相似、函数图象交点等知识及综合应用知识、解决问题的能力,同时注意解题时辅助线的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点(2,8)在抛物线y=ax2上,则a的值为(  )
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,以A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴的负半轴相交于D.
(1)若抛物线y=ax2+bx+c经过B、C、D三点,求此抛物线的解析式,并写出抛物线与圆A的另一个交点E的坐标;
(2)若动直线MN(MN∥x轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,当t为何值时,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的条件下,若以P、C、M为顶点的三角形与△OCD相似,求实数t的值.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

若(2,0)、(4,0)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线(  )
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.
(1)求m的值和抛物线y=ax2+bx的解析式;
(2)如在线段OB上有一点C,满足OC=2CB,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是
等腰
等腰
三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案