精英家教网 > 初中数学 > 题目详情
(1999•广州)如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出    个.
【答案】分析:可连接AB,分别以A、B为圆心,以AB长为半径作弧,两弧在AB的上下方各有一个交点,因此最多可作2个位置不同的等边三角形.
解答:解:最多可作2个位置不同的等边三角形,如图.

点评:此题主要考查的是等边三角形的判定方法:三边长度相等的三角形是等边三角形.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:解答题

(1999•广州)如图,已知AB是⊙O的直径,点D在弦AC上,DE⊥AB于E.
求证:AD•AC=AE•AB.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《尺规作图》(01)(解析版) 题型:解答题

(1999•广州)如图,已知线段a,b.求作:
(1)Rt△ABC,使∠ACB=90°,BC=a,AC=b;
(2)△ABC的角平分线CD和经过点A,C,D的⊙O.(作CD和⊙O不要求写作法,但要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《圆》(07)(解析版) 题型:解答题

(1999•广州)如图,已知正方形的边长是4cm,求它的内切圆与外接圆组成的圆环的面积.(答案保留π)

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(1999•广州)如图,PB是⊙O的割线,点A,B是它与⊙O的交点,PO交⊙O于点C,AB=4,PA=6,PC=4,求OC.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(1999•广州)如图,等边△ABC的面积为S,⊙O是它的外接圆,点P是的中点.
(1)试判断过点C所作⊙O的切线与直线AB是否相交,并证明你的结论;
(2)设直线CP与AB相交于点D,过点B作BE⊥CD,垂足为E,证明BE是⊙O的切线,并求△BDE的面积.

查看答案和解析>>

同步练习册答案