精英家教网 > 初中数学 > 题目详情
5.计算:$\sqrt{12}$+(π-1)0×|-2|-tan60°.

分析 按照实数的运算法则依次计算,注意:tan60°=$\sqrt{3}$,(π-1)0=1.

解答 解:原式=2$\sqrt{3}$+1×2-$\sqrt{3}$=2+$\sqrt{3}$.

点评 本题考查特殊三角函数值,实数的运算.任何不等于0的数的0次幂是1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.如图,某同学家在A处,现在该同学要去位于B处的同学家去玩,请帮助他选择一条最近的路线(  )
A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=$\frac{p}{q}$.
例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=$\frac{3}{4}$.
(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.
求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;
(3)在(2)所得“吉祥数”中,求F(t)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.

(1)将?ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段AE,GF;S矩形AEFG:S?ABCD=1:2.
(2)?ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是(  )
A.$\frac{25}{2}$πB.10πC.24+4πD.24+5π

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列图案中,属于轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{19}}$的值为(  )
A.$\frac{20}{21}$B.$\frac{61}{84}$C.$\frac{589}{840}$D.$\frac{431}{760}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值:$\frac{{a}^{2}-4a+4}{{a}^{2}-4}$÷$\frac{a-2}{{a}^{2}+2a}$-3,其中a=$\frac{7}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在⊙O中,AB是直径,点C在圆上,∠A=30°,BD∥AC,且BD=$\frac{1}{3}$AC.
(1)求∠D的度数;
(2)求证:DC是⊙O的切线;
(3)连接AD,求tan∠BAD的值.

查看答案和解析>>

同步练习册答案