精英家教网 > 初中数学 > 题目详情
如图所示,已知AB是半圆O的直径,D是AB延长线上的一点,AE⊥DC,交DC的延长线于点E,交半圆O于点F,且C为
BF
的中点.
(1)求证:DE是半圆O的切线;
(2)若∠D=30°,求证:∠CAE=∠BCD.
分析:(1)连接BF,OC,根据C是弧BF的中点可以得到OC⊥BF,根据直径所对的圆周角是直角可以得到BF⊥AE,则BF∥CE,因而可以证得OC⊥DE,从而证得DE是半圆O的切线;
(2)根据AB是半圆O的直径,∠ACB=90°,则∠ACE+∠BCD=90°,在直角△ACE中,∠ACE+∠EAC=90°,即可得到∠EAC=∠BCD.
解答:证明:(1)连接BF,OC.
∵C为弧BF的中点,
∴OC⊥BF,
又∵AB是半圆O的直径,
∴BF⊥AE,
∴BF∥CE,
∴OC⊥DE,
∴DE是半圆O的切线;

(2)∵AB是半圆O的直径,
∴∠ACB=90°,
∴∠ACE+∠BCD=90°,
又∵直角△ACE中,∠ACE+∠EAC=90°,
∴∠EAC=∠BCD.
点评:本题考查了圆周角定理,以及切线的判定,判定切线的问题常用的方法是转化成证明垂直问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.
(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=
103
.判断直线DE与半圆O的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=
10
3

(1)求
OD
OE

(2)证明:直线DE是半圆O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB是⊙O的直径,直线L与⊙O相切于点C,
AC
=
AD
,CD交AB于E,BF⊥直线L,垂足精英家教网为F,BF交⊙O于C.
(1)图中哪条线段与AE相等?试证明你的结论;
(2)若sin∠CBF=
5
5
,AE=4,求AB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连接AC,与DE交于点P.问EP与PD是否相等?证明你的结论.

查看答案和解析>>

同步练习册答案