【题目】如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积;
(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】
(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.
所以双曲线的解析式为y=﹣ .
设点B的坐标为(m,﹣m).
∵点B在双曲线上,
∴﹣m2=﹣4,解得m=2或m=﹣2.
∵点B在第四象限,
∴m=2.
∴B(2,﹣2).
将点A、B、C的坐标代入得: ,
解得: .
∴抛物线的解析式为y=x2﹣3x.
(2)解:如图1,连接AC、BC.
令y=0,则x2﹣3x=0,
∴x=0或x=3,
∴C(3,0),
∵A(﹣1,4),B(2,﹣2),
∴直线AB的解析式为y=﹣2x+2,
∵点D是直线AB与x轴的交点,
∴D(1,0),
∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;
(3)解:存在,理由:如图2,
由原抛物线的解析式为y=x2﹣3x=(x﹣ )2﹣ ,
∴原抛物线的顶点坐标为( ,﹣ ),
∴抛物线向左平移 个单位,再向上平移 个单位,
而平移前A(﹣1,4),B(2,﹣2),
∴平移后点A(﹣ , ),B( , ),
∴点A关于y轴的对称点A'( , ),
连接A'B并延长交y轴于点P,连接AP,
由对称性知,∠APE=∠BPE,
∴△APB的内切圆的圆心在y轴上,
∵B( , ),A'( , ),
∴直线A'B的解析式为y=3x﹣ ,
∴P(0,﹣ ).
【解析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;
(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;
(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.
科目:初中数学 来源: 题型:
【题目】我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.
(1)求W关于x的函数关系式,并写出自变量x的取值范围;
(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;
(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,甲乙两团队联合购票比分别购票最多节约3400元,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,矩形ABCD定点A、B在y轴、x轴上,当B在x轴上运动时,A随之在y轴运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】雾霾天气已经成为人们普遍关注的话题,雾霾不仅仅影响人们的出行,还影响着人们的健康.在2017年2月周末休息期间,某校九年级一班综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了太原市部分市民的观点,并对调查结果进行了整理,绘制了如下不完整的统计表及统计图,观察并回答下列问题:
类别 | 雾霾天气的主要成因 | 百分比 |
A | 工业污染 | 45% |
B | 汽车尾气排放 | m |
C | 城中村燃煤问题 | 15% |
D | 其他(绿化不足等) | n |
(1)请你求出本次被调查市民的人数及m,n的值,并补全条形统计图;
(2)若该市有800万人口,请你估计持有B,C两类看法的市民共有多少人?
(3)小明同学在四个质地、大小、形状都完全相同的小球上标记A,B,C,D代表四个雾霾天气的主要成因中,放在一个不透明的盒子中,他先随机抽取一个小球,放回去,再随机抽取一个小球,请用画树状图或列表的方法,求出小颖同学刚好抽到B和D的概率.(用A,B,C,D表示各项目)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD,AB=CD=4,BC=AD=8,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A B C E运动到E点停止,设点P经过的路程为,APE的面积为.
(1)当时,在图1中画出草图,并求出对应的值;
(2)利用备用图画出草图,写出与之间的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板,
(1)按如图①所示方式放置,点三点共线,,求的度数;
(2)在(1)的条件下,若分别是与内部的一条射线,且均以点为中心,分别从位置出发,以度/秒、度/秒的旋转速度沿逆时针方向旋转,当与重叠时,所有旋转均停止,试说明:当旋转秒后,
(3)若三角板 (不含角)是一块非标准三角板,按如图②所示方式放置,使,作射线,若,求与的度数之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的直线分别交AB,AC的延长线于点E,F,AF⊥EF.
(1)求证:EF是⊙O的切线;
(2)小强同学通过探究发现:AF+CF=2AO,请你帮助小强同学证明这一结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com