精英家教网 > 初中数学 > 题目详情
17.不论x取何值,函数y=x2-2x+a的函数值永远大于零,则a的取值范围是a>1.

分析 函数y=x2-2x+a的函数值永远大于零,则判别式△<0,据此即可求解.

解答 解:△=4-4a<0,
解得:a>1.
故答案是:a>1.

点评 本题考查了二次函数与x轴的交点,交点的个数可以用判别式进行判断.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,P为正方形ABCD边CD上一点,∠BAP的平分线交BC于点Q,说明:AP=DP+BQ.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图所示,山坡AB的坡度为5:12,一辆汽车从山脚A处出发,把货物运到高度为75m的山顶B处,求汽车从A到B所行驶的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,两圆轮叠靠在墙边,已知两轮半径分别为1和4,它们与墙的切点为A,B,则小圆轮上最高点与地面间的距离为9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知抛物线y=-x2+2x+3与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C.
(1)直接写出A、B、C三点的坐标;
(2)点M是线段BC上的点(不与B,C重合),设点M的横坐标为m.
①若以A为圆心、AM长为半径的圆与直线BC相切,求点M的坐标;
②过点M作MN∥y轴交抛物线于N,连接NB、NC,当△BNC的面积取最大值时,求m的值.
③在②的条件下.求sin∠CBN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,∠1的正切值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列计算错误的是(  )
A.(232×24=210B.(-c)3(-c)5=c8C.32×(-3)4=(-3)6D.5×(-$\frac{1}{2}$)2=20

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:${({-1})^{2012}}-|{-1+\frac{1}{4}}|×\root{3}{64}+{({2012-\sqrt{3}})^0}+{3^{-2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知点A,B分别在x轴,y轴上,且OA=OB,P为动点,且PA⊥PB.
(1)如图①,P在第一象限时,求∠OPA的度数.
(2)如图②,P在第四象限,求∠OPA的度数.

查看答案和解析>>

同步练习册答案