【题目】如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)求P点的坐标(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)设四边形OMPC的面积为S1,四边形ABNP的面积为S2,请你就x的取值范围讨论S1与S2的大小关系并说明理由;
(4)当x为何值时,△NPC是一个等腰三角形?
【答案】(1)点P坐标为(x,);(2)S的最大值为,此时x=2;(3)当0<x<2时,S1<S2;当x=2时,S1=S2;当2<x<4时,S1>S2;(4)x=,或x=,或x=.
【解析】
(1)首先根据题意得到C、M、N三点的坐标值.根据三角形中三角函数的关系,进而得到P点的坐标值.
(2)设△NPC的面积为S.在△NPC,根据(1)可知CN的长关于x的表达式,NC边上的高关于x的表达式.再利用三角形面积的计算公式求得,S关于x二次函数表达式.在x的取值范围内求该二次函数的最大值.
(3)根据梯形的面积计算公式写出S1关于x的表达式,根据S2=S△ABC-S△PCN写出关于x的关系式.再就0<x<4的取值,讨论S1与S2的大小关系.
(4)首先延长MP交CB于Q,则有PQ⊥BC.再分解就①若NP=CP;②若CP=CN;③若CN=NP三种情况讨论x的取值.
(1)由题意可知,C(0,3),M(x,0),N(4-x,3),
∴点P坐标为(x,3x);
(2)设△NPC的面积为S,
在△NPC中,NC=4-x,NC边上的高为x,其中,0≤x≤4,
∴S=(4-x)×x=-(x-2)2+,
∴S的最大值为,此时x=2;
(3)由图形知,S1= (OC+MP)OM= (3+3x)x
S2=S△ABC-S△PCN=×4×3 (4x)×x;
当0<x<2时,S1<S2;当x=2时,S1=S2;当2<x<4
(4)延长MP交CB于Q,则有PQ⊥BC.
①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.
②若CP=CN,则,CN=4-x,PQ=x,CP=x,4-x=x,∴x=.
③若CN=NP,则CN=4-x.∵PQ=x,NQ=4-2x,在Rt△PNQ中,PN2=NQ2+PQ2
∴(4-x)2=(4-2x)2+(x)2,∴x=.
综上所述,x=,或x=,或x=.
科目:初中数学 来源: 题型:
【题目】(阅读材料)
对于二次三项式可以直接分解为的形式,但对于二次三项式,就不能直接用公式了,我们可以在二次三项式中先加上一项,使其成为完全平方式,再减去这项,(这里也可把拆成与的和),使整个式子的值不变.
于是有:
,
我们把像这样将二次三项式分解因式的方法叫做添(拆)项法.
(应用材料)
上式中添(拆)项后先把完全平方式组合在一起,然后用______法实现分解因式.
请你根据材料中提供的因式分解的方法,将下面的多项式分解因式:
;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示时间,y 表示张强离家的距离。根据图象提供的信息,以下四个说法错误的是( )
A. 体育场离张强家2.5千米 B. 张强在体育场锻炼了15分钟
C. 体育场离早餐店4千米 D. 张强从早餐店回家的平均速度是3千米/小时
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在7×7的正方形网格中,△ABC的顶点都在边长为1的小正方形的顶点上.
(1)将△ABC绕点B逆时针旋转90°,画出旋转后得到的△A1BC1;
(2)求出旋转过程中,线段BA扫过的图形的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC.∠BCA的平分线交于点I,若∠ACB=75°,AI=BC-AC,则∠B的度数为( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将三角板的直角顶点放在P(5,5)处,两条直角边与坐标轴分别交于点A和点B.
(1)如图(1),点A、点B分别在x轴、y轴正半轴上运动时,试探究OA+OB是否为一定值,若是,求出这个定值,若不是,请说明理由.
(2)如图(2),点在x轴正半轴上运动,点在y轴的负半轴上运动时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交C于F,EG⊥AB于G,请判断四边形GECF的形状,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com