小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校,我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:
(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟?
(2)小明共用多长时间到学校的?
(3)小明修车前的速度和修车后的速度分别是多少?
(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?
科目:初中数学 来源: 题型:填空题
如图,反映了某产品的销售收入与销售量之间的关系,反映了该产品的销售成本与销售量之间的关系。当销售收入大于销售成本时该产品才开始盈利。由图可知,该产品的销售量达到____________ 后,生产该产品才能盈利。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
直线与双曲线相交于A、B两点,已知点A(﹣2,﹣1).
(1)求k的值及点B的坐标;
(2)若点P是y轴正半轴上的动点,判断有几个位置能使△PBO为等腰三角形,直接写出相应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段和分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数(张)和每个无人售票窗口售出的车票数(张)关于售票时间(小时)的函数图象.
(1)求(张)与(小时)的函数解析式;
(2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
张先生准备在沙坪坝购买一套小户型商品房,他去某楼盘了解情况得知, 该户型商品房的单价是8000元/,面积如图所示(单位:米,卫生间的宽未定,设宽为米),售房部为张先生提供了以下两种优惠方案:
方案一:整套房的单价是8000元/,其中厨房可免费赠送的面积;
方案二:整套房按原销售总金额的9折出售.
(1)用表示方案一中购买一套该户型商品房的总金额,用表示方案二中购买一套该户型商品房的总金额,分别求出、与的关系式;
(2)求取何值时,两种优惠方案的总金额一样多?
(3)张先生因现金不够,于2012年1月在建行借了9万元住房贷款,贷款期限为6年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%,每月还款数额=平均每月应还的贷款本金数额+月利息,月利息=上月所剩贷款本金数额×月利率.
①张先生借款后第一个月应还款数额是多少元?
②假设贷款月利率不变,若张先生在借款后第(,是正整数)个月的还款数额为P,请写出P与之间的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=(x>0)的函数图象经过点D,点P是一次函数的图象与该反比例函数图象的一个公共点.
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数的图象一定过点C;
(3)对于一次函数,当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:
桌椅型号 | 一套桌椅所坐学生人数(单位:人) | 生产一套桌椅所需木材(单位:m3) | 一套桌椅的生产成本(单位:元) | 一套桌椅的运费(单位:元) |
A | 2 | 0.5 | 100 | 2 |
B | 3 | 0.7 | 120 | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
天水市某校为了开展“阳光体育”活动,需购买某一品牌的羽毛球,甲、乙两超市均以每只3元的价格出售,并对一次性购买这一品牌羽毛球不低于100只的用户均实行优惠:甲超市每只羽毛球按原价的八折出售;乙超市送15只羽毛球后其余羽毛球每只按原价的九折出售.
(1)请你任选一超市,一次性购买x(x≥100且x为整数)只该品牌羽毛球,写出所付钱y(元)与x之间的函数关系式.
(2)若共购买260只该品牌羽毛球,其中在甲超市以甲超市的优惠方式购买一部分,剩下的又在乙超市以乙超市的优惠方式购买.购买260只该品牌羽毛球至少需要付多少元钱?这时在甲、乙两超市分别购买该品牌羽毛球多少只?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
从甲地到乙地,先是一段平路,然后是一段上坡路。小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间。假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km。设小明出发xh后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.
(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;
(2)求线段AB,BC所表示的y与之间的函数关系式;
(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com