精英家教网 > 初中数学 > 题目详情

【题目】如图RtABCABC=90°,AB为直径的⊙OAC于点DEBC的中点连接DE.

(1)求证:DE是⊙O的切线;

(2)若∠BAC=30°,DE=3,AD的长.

【答案】(1)详见解析;(2)9.

【解析】

试题(1)如图,作辅助线;根据题意结合图形,证明∠ODE=90°,即可解决问题.

(2)首先求出BC=6,进而求出BD的值;运用直角三角形的性质求出AD的值,即可解决问题.

试题解析:(1)连接OD、BD,

AB为⊙O的直径,

∴∠ADB=CDB=90°;

又∵点EBC的中点,

BE=DE,

∴∠BDE=EBD;

OA=OD,

∴∠OAD=ODA;

又∵∠OAD+OBD=90°,EBD+OBD=90°,

∴∠OAD=EBD,即∠ODA=BDE;

∴∠ODE=BDE+ODB=ODA+ODB=90°,

又∵点D在⊙O上,

DE是圆⊙O的切线.

(2)解:由(1)知BC=2DE=6,

又∵∠CBD=BAC=30°,

CD=3,BD=3

AB=6

由勾股定理得:AD=9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做和谐三角形”.如图1中,若,则和谐三角形”.

1)等边三角形一定是和谐三角形,是______命题(填.

2)若中,,且,若和谐三角形,求.

3)如图2,在等边三角形的边上各取一点,且相交于点的高,若和谐三角形,且.

①求证:.

②连结,若,那么线段能否组成一个和谐三角形?若能,请给出证明:若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90°,则旋转后点D的对应点D′的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校为了解全校名学生双休日在家最爱选择的电视频道情况,问卷要求每名学生从“新闻,体育,电影,科教,其他”五项中选择其一,随机抽取了部分学生,调查结果绘制成未完成的统计图表如下:

频道

新闻

体育

电影

科教

其他

人数

求调查的学生人数及统计图表中的值;

求选择其他频道在统计图中对应扇形的圆心角的度数;

求全校最爱选择电影频道的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC

1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;

2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(13),点B的坐标为(-2-1),则点C的坐标为

3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为

4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线p: 的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是和y=2x+2,则这条抛物线的解析式为____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.

(1)若购买两种树总金额为560000元,求甲、乙两种树各购买了多少棵?

(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,请你按照下面要求完成尺规作图.

以点为圆心,长为半径画弧,交于点

再分别以为圆心,大于的长为半径画弧,两弧交于点

连接并延长交于点

请你判断以下结论:

的一条角平分线;连接是等边三角形;

在线段的垂直平分线上;.其中正确的结论有________(只需要写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图矩形ABCD的长AB=30,BC=20.

(1)如图(1)若沿矩形ABCD四周有宽为1的环形区域图中所形成的两个矩形ABCDABCD相似吗?请说明理由

(2)如图(2),x为多少时图中的两个矩形ABCDABCD相似?

查看答案和解析>>

同步练习册答案