精英家教网 > 初中数学 > 题目详情
已知△ABC中,∠BAC=100°.
(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;
(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;
(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.
分析:(1)根据三角形内角和定理可求得∠ABC+∠ACB的度数,再根据角平分线的定义可求得∠OBC+∠OCB的度数,从而不难∠BOC的大小.
(2)根据三角形内角和定理可求得∠ABC+∠ACB的度数,再根据三等分线的定义可求得∠OBC+∠OCB的度数,从而不难∠BOC的大小.
(3)根据三角形内角和定理可求得∠ABC+∠ACB的度数,再根据n等分线的定义可求得∠OBC+∠OCB的度数,从而不难探求∠BOC的大小与n的关系.
解答:解:∵∠BAC=100°,
∴∠ABC+∠ACB=80°,
(1)∵点O是∠ABC与∠ACB的角平分线的交点,
∴∠OBC+∠OCB=40°,
∴∠BOC=140°.

(2)∵点O是∠ABC与∠ACB的三等分线的交点,
∴∠OBC+∠OCB=
80
3
°,
∴∠BOC=
460
3
°.

(3)∵点O是∠ABC与∠ACB的n等分线的交点,
∴∠OBC+∠OCB=
80
n
°,
∴∠BOC=180°-
80
n
°.
当∠BOC=170°时,是八等分线的交线所成的角.
点评:此题主要考查三角形内角和定理和角平分线的应用,要熟记三角形的内角和为180°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分别是边AB、BC上的动点,且点P不与点A、B重合,点Q不与点B、C重合.
(1)在以下五个结论中:①∠CQP=45°;②PQ=AC;③以A、P、C为顶点的三角形全等于△PQB;④以A、P、C为顶点的三角形全等于△CPQ;⑤以A、P、C为顶点的三角形相似于△CPQ.一定不成立的是
 
.(只需将结论的代号填入题中的模线上).
(2)设AC=BC=1,当CQ的长取不同的值时,△CPQ是否可能为直角三角形?若可能,请说明所有的精英家教网情况;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,则四边形DBFE的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过D作DF⊥AC于F
(1)求证:DF是⊙O的切线;
(2)连接DE,且AB=4,若∠FDC=30°,试求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-9x+20=0的一个根,则该三角形为
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AB垂直平分线交AC于D,连接BE,若∠A=40°,则∠EBC=(  )

查看答案和解析>>

同步练习册答案