精英家教网 > 初中数学 > 题目详情
(2013•重庆)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为
9
4
9
4
9
4
9
4
分析:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,求出∠MCP=∠DPN,证△MCP≌△NPD,推出DN=PM,PN=CM,设AD=x,求出DN=2x-1,得出2x-1=1,求出x=1,得出D的坐标,在Rt△DNP中,由勾股定理求出PC=PD=
5
,在Rt△MCP中,由勾股定理求出CM=2,得出C的坐标,设直线CD的解析式是y=kx+3,把D(3,2)代入求出直线CD的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.
解答:解:
过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,
∠CMP=∠DNP=∠CPD=90°,
∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,
∴∠MCP=∠DPN,
∵P(1,1),
∴OM=BN=1,PM=1,
在△MCP和△NPD中
∠CMP=∠DNP
∠MCP=∠DPN
PC=PD

∴△MCP≌△NPD,
∴DN=PM,PN=CM,
∵BD=2AD,
∴设AD=x,BD=2x,
∵P(1,1),
∴DN=2x-1,
则2x-1=1,
x=1,
即BD=2,C的坐标是(0,3),
∵直线y=x,
∴AB=OB=3,
在Rt△DNP中,由勾股定理得:PC=PD=
(3-1)2+(2-1)2
=
5

在Rt△MCP中,由勾股定理得:CM=
(
5
)2-12
=2,
则C的坐标是(0,3),
设直线CD的解析式是y=kx+3,
把D(3,2)代入得:k=-
1
3

即直线CD的解析式是y=-
1
3
x+3,
即方程组
y=-
1
3
x+3
y=x
得:
x=
9
4
y=
9
4

即Q的坐标是(
9
4
9
4
),
故答案为:(
9
4
9
4
).
点评:本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定,解方程组,勾股定理,旋转的性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但是有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•重庆)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.

查看答案和解析>>

同步练习册答案