分析 (1)由题意,可知∠B=30°,AC=6cm.BP=2t,AP=AB-BP,AQ=t.
(2)若△APQ是以PQ为底的等腰三角形,则有AP=AQ,即12-2t=t,求出t即可.
(3)先根据直角三角形的性质求出∠B的度数,再由平行线的性质得出∠QPA的度数,根据直角三角形的性质即可得出结论.
解答 解:(1)∵Rt△ABC中,∠C=90°,∠A=60°,
∴∠B=30°.
又∵AB=12cm,
∴AC=6cm,BP=2t,AP=AB-BP=12-2t,AQ=t;
(2)∵△APQ是以PQ为底的等腰三角形,
∴AP=AQ,即12-2t=t,
∴当t=4时,△APQ是以PQ为底边的等腰三角形;
(3)当PQ⊥AC时,PQ∥BC.
∵∠C=90°,∠A=60°,
∴∠B=30°
∵PQ∥BC,
∴∠QPA=30°
∴AQ=$\frac{1}{2}$AP,
∴t=$\frac{1}{2}$(12-2t),解得t=3,
∴当t=3时,PQ∥BC.
点评 本题考查的是等腰三角形的判定及平行线的判定与性质,熟知等腰三角形的两腰相等是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 9,12,13 | B. | $\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$ | C. | 32,42,52 | D. | 1,$\sqrt{2}$,$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com