分析 (1)连接OB,根据同弧所对的圆周角是圆心角的一半和等腰三角形的性质解答即可;
(2)根据(1)的方法解答即可;
(3)过O作OE⊥AC于E,连接OC,证明AE=$\frac{\sqrt{3}}{2}$OA,得到△ABC为正三角形,得到答案.
解答 解:(1)连接OB,则OA=OB,
∴∠OAB=∠OBA,
∵∠C=36°,
∴∠AOB=72°,
∵∠OAB=$\frac{1}{2}$(180°-∠AOB)=54°,
即β=54°.
(2)α与β之间的关系是α+β=90°;
证明:∵∠OBA=∠OAB=α,
∴∠AOB=180°-2α,
∵∠AOB=2∠β,
∴180°-2α=2∠β,
∴α+β=90°.
(3)∵点C平分优弧AB
∴AC=BC
又∵BC2=3OA2,
∴AC=BC=$\sqrt{3}$OA,
过O作OE⊥AC于E,连接OC,
由垂径定理可知AE=$\frac{\sqrt{3}}{2}$OA,
∴∠AOE=60°,∠OAE=30°,
∴∠ABC=60°,
∴△ABC为正三角形,
则α=∠CAB-∠CAO=30°.
点评 本题考查的是三角形的外接圆、垂径定理和锐角三角函数的知识,综合性较强,需要学生灵活运用所学的知识,正确作出辅助线构造直角三角形进行解答.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com